Notes
![]() ![]() Notes - notes.io |
1% and 49.9%, respectively, compared to the control using glucose and yeast extract as substrates, which could improve the competitiveness of pullulan against other polysaccharides in industrial applications.During oncogenesis, several alterations occur within cells, one of them being the abnormal glycosylation of proteins, resulting in the formation of glycoproteins with aberrant glycan structures, which can be secreted into the blood stream. Their specific association to tumour cells makes them useful indicators (biomarkers) of the oncogenic process and their detection in blood can be employed in different stages of tumour development for early detection, prognosis and therapeutic drug monitoring. Due to the importance of detecting cancer-associated glycoproteins with aberrant glycosylation in blood or serum, analytical methodologies with improved performance are required to ameliorate the laboratorial tests currently used for the detection of these analytes. Microfluidics was created to facilitate the implementation of simple and point-of-care analysis, away from a centralized laboratory. The massive use of microfluidic systems in clinical settings can be seen in pregnancy tests and diabetes control, for example. But what about other clinical domains, such as the detection of glycoproteins with aberrant glycans secreted by tumour cells? Are microfluidic systems helpful in this case? This review analyses the requirements of a microfluidic assay for the detection of low-abundant blood/serum cancer-associated glycoproteins with abnormal glycans and the progresses that have been made in the last years to develop integrated microfluidic devices for this particular application. The diverse microfluidic systems found in literature present, in general, the same analytical performance as the conventional assays but have additional advantages, namely a reduction in assay times, a decrease of sample and reagent consumption and lower costs. The review will also focus on the improvements that are still needed for better biosensing of this type of cancer biomarkers using microfluidic devices.
Fibrinogen activity (Ac) is widely measured, but fibrinogen antigen (Ag) is measured only in specialized laboratories, so it is difficult to discriminate congenital fibrinogen disorders (CFDs) from acquired hypofibrinogenemia (aHypo). In this study, to screen for CFD phenotypes we adopted novel parameters, |min1|c and Ac/ |min1|c, and compared these with validated Ac, Ag, and Ac/Ag, and previously proposed Ac/dH and Ac/|min1|.
We calibrated |min1| using a CN-6000 instrument and investigated the correlation between Ag and |min1|c for aHypo (n=131) and CFD [18 dysfibrinogenemia (Dys), two hypodysfibrinogenemia (Hypodys) and four hypofibrinpogenemia (Hypo)]. Furthermore, we proposed a schema for screening CFD phenotypes using |min1|c and Ac/|min1|c.
The |min1|c correlated well with Ag in aHypo, and Ac/|min1|c was a better parameter for screening Dys and Hypodys than Ac/dH and Ac/|min1|. With the combination of |min1|c and Ac/|min1|c parameters, 15 Dys, 2 Hypodys and four Hypo were categorized in agreement with the phenotype determined using Ag and Ac/Ag; conversely three Dys were classified as one Hypodys (AαR16C) and two Hypo (BβG15C).
We demonstrated that |min1|c and Ac/|min1|c are valuable parameters for screening CFD patients and phenotypes in laboratories that do not measure Ag or perform genetic analysis.
We demonstrated that |min1|c and Ac/|min1|c are valuable parameters for screening CFD patients and phenotypes in laboratories that do not measure Ag or perform genetic analysis.
To develop a minimum data set, known as a core outcome set, for future abortion randomized controlled trials.
We extracted outcomes from quantitative and qualitative systematic reviews of abortion studies to assess using a modified Delphi method. Via email, we invited researchers, clinicians, patients, and healthcare organization representatives with expertise in abortion to rate the importance of the outcomes on a 9-point Likert scale. After 2 rounds, we used descriptive analyses to determine which outcomes met the predefined consensus criteria. this website We finalized the core outcome set during a series of consensus development meetings.
We entered 42 outcomes, organized in 15 domains, into the Delphi survey. Two-hundred eighteen of 251 invitees (87%) provided responses (203 complete responses) for round 1 and 118 of 218 (42%) completed round2. Sixteen experts participated in the development meetings. The final outcome set includes 15 outcomes 10 outcomes apply to all abortion trials (successful abortion, ongoing pregnancy, death, hemorrhage, uterine infection, hospitalization, surgical intervention, pain, gastrointestinal symptoms, and patients' experience of abortion); 2 outcomes apply to only surgical abortion trials (uterine perforation and cervical injury), one applies only to medical abortion trials (uterine rupture); and 2 apply to trials evaluating abortions with anesthesia (over-sedation/respiratory depression and local anesthetic systemic toxicity).
Using robust consensus science methods we have developed a core outcome set for future abortion research.
Using robust consensus science methods we have developed a core outcome set for future abortion research.Biosensor technology is considered to be a great alternative in analytical techniques over the conventional methods. Among many recently developed techniques and devices, aptasensors are interesting because of their high specificity, selectivity and sensitivity. Combining aptamer as a biological recognition element with gold nanoparticles (AuNPs) as probe, are becoming more general owing to their beneficial properties, including low cost and ability to analyze specific targets on-site and using naked eye. Hydrogen bonds, nucleic acid hybridization, aptamer-target and antigen-antibody binding, Raman signature, enzyme inhibition, and enzyme-mimicking activity are main different sensing strategies exploited in AuNPs-based optical aptasensors. In this review article, we discussed the recent advances in optical aptasensors with a special emphasis on the catalytic activity property of AuNPs.
Website: https://www.selleckchem.com/products/stattic.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team