Notes
![]() ![]() Notes - notes.io |
A reasonable agreement was found between the model predicted behavior and experimentally determined data in terms of CO2 solubility, Mt concentration and aspect ratio were calculated based on average absolute relative error (%AARE). The proposed modified model efficiently predicts the CO2 permeance across MMMs up to 3 wt% Mt loadings and 6 bar pressure with ± 10%AARE.Lead sulfide nanoparticle (nano-PbS) released into environment can cause hazards to human or ecosystem. Nano-PbS potentially undergoes oxidation in the environment, but oxidation mechanism is not understood yet. Herein, oxidation kinetics and products of nano-PbS by ozone (O3), hydrogen peroxide (H2O2) and hydroxyl radical (HO·) in the atmosphere or natural water were investigated. Results show that oxidation process of nano-PbS can be divided into three stages, producing sulfate, ions and oxides of lead in sequence. O3 or HO·leads to faster release of ionic lead from nano-PbS in the initial stage than H2O2, but causes significant decrease of ionic lead by transforming divalent lead to tetravalent lead oxides in the second or third stage. Toxicity determined taking Chlorella Vulgaris as an example follows an order of PbO2 less then Pb3O4 less then nano-PbS less then PbO less then PbSO4. Toxicity of lead particles is mainly determined by sizes influencing cellular uptake and solubility product constant (Ksp) related with dissolution of lead in cells. The results indicate that the toxicity of nano-PbS increases in an initial oxidation stage and decreases in further oxidation stages. This study provides new insights into environmental behavior of nano-PbS and mechanism understandings for assessing ecological risks of nano-PbS.The chiral pesticide enantiomers often show selective efficacy and non-target toxicity. In this study, the enantioselective degradation characteristics of the chiral organophosphorus insecticide isocarbophos (ICP) by Cupriavidus nantongensis X1T were investigated systematically. Strain X1T preferentially degraded the ICP R isomer (R-ICP) over the S isomer (S-ICP). The degradation rate constant of R-ICP was 42-fold greater than S-ICP, while the former is less bioactive against pest insects but more toxic to humans than the latter. The concentration ratio of S-ICP to R-ICP determines whether S-ICP can be degraded by strain X1T. S-ICP started to degrade only when the ratio (CS-ICP/CR-ICP) was greater than 62. Divalent metal cations could improve the degradation ability of strain X1T. The detected metabolites that were identified suggested a novel hydrolysis pathway, while the hydrolytic metabolites were less toxic to fish and green algae than those from P-O bond breakage. The crude enzyme degraded both R-ICP and S-ICP in a similar rate, indicating that enantioselective degradation was due to the transportation of strain X1T. The strain X1T also enantioselectively degraded the chiral organophosphorus insecticides isofenphos-methyl and profenofos. The enantioselective degradation characteristics of strain X1T make it suitable for remediation of chiral organophosphorus insecticide contaminated soil and water.Chinese liquor distillers' grain (CLDG) is an abundant industrial organic waste showing high potential as feedstock for biofuel conversion. selleck In this study, CLDG was used as substrate by microbial community in pit mud to produce medium-chain fatty acids (especially caproate). Simulated and real fermentation were used to evaluate the effect of ethanol and lactic acid being the electronic donors (EDs) during the anaerobic chain elongation (CE). The caproate concentration was achieved at 449 mg COD/g VS, with the corresponding high carbon selectivity at 37.1%. Microbial analysis revealed that the domestication of pit mud increased the abundance of Caproiciproducens (converting lactic acid into caproate) and Lactobacillus (producing lactic acid), leading to enhanced caproate production. The lactic acid conversion facilitated in full utilization of ethanol through CE consumption. The coexistence of EDs benefited the CE system and that this green energy production can be a promising high-performance biofuel donor for sustainable industrial production development.Mass transfer efficiency and catalytic reactivity are the two major hurdles for heterogeneous catalytic wet peroxide oxidation (CWPO) technologies. To address these issues, nanocomposite CuFeO2/Al2O3 was synthesized and assessed as a novel catalyst for enhanced adsorption and oxidation of anionic pollutants (catechol and reactive red 195 (RR195)) in waters. With a positive charge on the nanocomposite by introducing Al2O3, the adsorption of anionic pollutants was promoted. The surface complexation reaction on CuFeO2/Al2O3, which fits well to the Langmuir isotherm, has engined the mass transfer of pollutants to the nanocatalyst that demonstrated 96.46% and 99.75% removal of catechol and RR195 at pH 3, respectively. CuFeO2/Al2O3 also showed good performance in various reaction media including binary pollutants system and real wastewaters. The hydroxyl radical in aqueous solution played a major role in the pollutants degradation. The CWPO, which followed the Haber-Weiss mechanism, has been accelerated by the Cu and Fe redox cycles. The robustness of the catalyst was verified by negligible amount of metal leaching from the catalysts along with stable catalytic performance after five cycles. Upon the observed results, CuFeO2/Al2O3 with the synergistic effect has shown to be a promising catalyst for removal and degradation of anionic pollutants in CWPO.Decapitation and root pruning, can impact plant morphological and physiological characteristics, which may determine the efficiency of phytoremediation. However, the effects of decapitated and root-pruned plants on the characterization of dissolved organic matter (DOM) and enzymatic activity, which determine the bioavailability of soil pollutants, have rarely been reported. This study aims to characterize DOM and enzymatic activity in the rhizosphere soil of Sedum alfredii when treated by decapitation and root pruning. Decapitation, slight pruning (10% root cutting), and their combination stimulated S. alfredii to secrete more DOM in the rhizosphere soil compared with the control. Furthermore, the proportions of hydrophilic increased from 42.7% in the control to 57.1% in the decapitation and slight pruning combination. Soil urease, invertase, and neutral phosphatase activities were higher in the rhizosphere soil of decapitated and root-pruned S. alfredii, and the highest values were observed with their combination.
Website: https://www.selleckchem.com/products/gsk1120212-jtp-74057.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team