NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

GFP-Tagged Protein Detection through Electron Microscopy Utilizing a GBP-APEX Application throughout Drosophila.
The thickness of the cerebral cortical sheet and its surface area are highly heritable traits thought to have largely distinct polygenic architectures. Despite large-scale efforts, the majority of their genetic determinants remain unknown. Our ability to identify causal genetic variants can be improved by employing brain measures that better map onto the biology we seek to understand. Such measures may have fewer variants but with larger effects, that is, lower polygenicity and higher discoverability. Using Gaussian mixture modeling, we estimated the number of causal variants shared between mean cortical thickness and total surface area, as well as the polygenicity and discoverability of regional measures. We made use of UK Biobank data from 30 880 healthy White European individuals (mean age 64.3, standard deviation 7.5, 52.1% female). We found large genetic overlap between total surface area and mean thickness, sharing 4016 out of 7941 causal variants. Regional surface area was more discoverable (P = 2.6 × 10-6) and less polygenic (P = 0.004) than regional thickness measures. These findings may serve as a roadmap for improved future GWAS studies; knowledge of which measures are most discoverable may be used to boost identification of genetic predictors and thereby gain a better understanding of brain morphology.The consequences of the Cretaceous-Paleogene (K-Pg) boundary (KPB) mass extinction for the evolution of plant diversity remain poorly understood, even though evolutionary turnover of plant lineages at the KPB is central to understanding assembly of the Cenozoic biota. The apparent concentration of whole genome duplication (WGD) events around the KPB may have played a role in survival and subsequent diversification of plant lineages. selleck products To gain new insights into the origins of Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant across many vegetation types, and the fossil record suggests that they rose to such prominence after the KPB in parallel with several well-studied animal clades including Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have occurred early in legume evolution. Using a recently inferred phylogenomic framework, we investigate the placement of WGDs ioideae WGD, paleopolyploidy occurred close to the KPB. We conclude that the early evolution of the legumes followed a complex history, in which multiple auto- and/or allopolyploidy events coincided with rapid diversification and in association with the mass extinction event at the KPB, ultimately underpinning the evolutionary success of the Leguminosae in the Cenozoic.Unlike the well understood alpine treeline, the upper range limits of tree taxa that do not reach the alpine treeline are largely unexplained. In this study, we explored the causes of the exceptionally high elevation (4,270 m) occurrence of broad-leaved evergreen oaks (Quercus pannosa) in SE Himalayas. We assessed the course of freezing resistance of buds and leaves from winter to summer at the upper elevational limit of this oak species. Linked to leaf phenology, we analyzed freezing resistance and assessed minimum crown temperature for the past 65 years. We also examined potential carbon limitation at the range limit of this species. Last season buds and leaves operated at a safety margin of 5.5 and 11 K in mid-winter. Once fully dehardened early in July, last season foliage is damaged at -5.9 and new foliage at -4.6°C. Bud break is timed for late June to early July when low temperature extremes historically were never below -3.0°C. The monsoon regime ensures a long remaining season (149 d), thus compensating for the late onset of shoot growth. Compared to a site at 3450 m, specific leaf area (SLA) is reduced, foliar non-structural carbohydrate (NSC) concentrations are similar, and the δ13C signal, is higher, jointly suggesting that carbon limitation is unlikely at the range limit of this species. We also show that these oaks enter the growing season with fully intact (not embolized) xylem. We conclude that the interaction between phenology and freezing tolerance results in safe flushing, while still facilitating shoot maturation before winter. These factors jointly determine the upper range limit of this oak species. Our study illuminates an exceptional case of broad-leafed evergreen tree performance near treeline, and by exploring a suite of traits, we can underpin the central role of flushing phenology in such a stressful environment.Objective As clinical trials evolve in complexity, clinical trial data models that can capture relevant trial data in meaningful, structured annotations and computable forms are needed to support accrual. Material and methods We have developed a clinical trial information model, curation information system, and a standard operating procedure for consistent and accurate annotation of cancer clinical trials. Clinical trial documents are pulled into the curation system from publicly available sources. Using a web-based interface, a curator creates structured assertions related to disease-biomarker eligibility criteria, therapeutic context, and treatment cohorts by leveraging our data model features. These structured assertions are published on the My Cancer Genome (MCG) website. Results To date, over 5000 oncology trials have been manually curated. All trial assertion data are available for public view on the MCG website. Querying our structured knowledge base, we performed a landscape analysis to assess the top diseases, biomarker alterations, and drugs featured across all cancer trials. Discussion Beyond curating commonly captured elements, such as disease and biomarker eligibility criteria, we have expanded our model to support the curation of trial interventions and therapeutic context (ie, neoadjuvant, metastatic, etc.), and the respective biomarker-disease treatment cohorts. To the best of our knowledge, this is the first effort to capture these fields in a structured format. Conclusion This paper makes a significant contribution to the field of biomedical informatics and knowledge dissemination for precision oncology via the MCG website. Key words knowledge representation, My Cancer Genome, precision oncology, knowledge curation, cancer informatics, clinical trial data model.
Here's my website: https://www.selleckchem.com/products/oligomycin-a.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.