NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Point-source burst involving control polymer-bonded nanoparticles regarding tri-modality cancer malignancy remedy.
We quantitatively evaluate the performance of STIC on both simulation and real sequencing datasets, the results of which indicate that STIC outperforms competing methods.Non-negative matrix factorization (NMF) is a dimensionality reduction technique based on high-dimensional mapping. It can effectively learn part-based representations. In this paper, we propose a method called Dual Hyper-graph Regularized Supervised Non-negative Matrix Factorization (HSNMF). To encode the geometric information of the data, the hyper-graph is introduced into the model as a regularization term. The advantage of hyper-graph learning is to find higher order data relationship to enhance data relevance. This method constructs the data hyper-graph and the feature hyper-graph to find the data manifold and the feature manifold simultaneously. The application of hyper-graph theory in cancer datasets can effectively find pathogenic genes. The discrimination information is further introduced into the objective function to obtain more information about the data. CC220 cell line Supervised learning with label information greatly improves the classification effect. Furthermore, the real datasets of cancer usually contain sparse noise, so the -norm is applied to enhance the robustness of HSNMF algorithm. Experiments under The Cancer Genome Atlas (TCGA) datasets verify the feasibility of the HSNMF method.Detection and diagnosis of cancer are especially essential for early prevention and effective treatments. Many studies have been proposed to tackle the subtype diagnosis problems with those data, which often suffer from low diagnostic ability and bad generalization. This paper studies a multiobjective PSO-based hybrid algorithm (MOPSOHA) to optimize four objectives including the number of features, the accuracy, and two entropy-based measures the relevance and the redundancy simultaneously, diagnosing the cancer data with high classification power and robustness. First, we propose a novel binary encoding strategy to choose informative gene subsets to optimize those objective functions. Second, a mutation operator is designed to enhance the exploration capability of the swarm. Finally, a local search method based on the ''best/1'' mutation operator of differential evolutionary algorithm (DE) is employed to exploit the neighborhood area with sparse high-quality solutions since the base vector always approaches to some good promising areas. In order to demonstrate the effectiveness of MOPSOHA, it is tested on 41 cancer datasets including thirty-five cancer gene expression datasets and six independent disease datasets. Compared MOPSOHA with other state-of-the-art algorithms, the performance of MOPSOHA is superior to other algorithms in most of the benchmark datasets.Brain functional connectivity (FC) has shown great potential in becoming biomarkers of brain status. However, the problem of accurately estimating FC from complex-noisy fMRI time series remains unsolved. Usually, a regularization function is more appropriate in fitting the real inherent properties of the brain function activity pattern, which can further limit noise interference to improve the accuracy of the estimated result. Recently, the neuroscientists widely suggested that the inherent brain function activity pattern indicates sparse, modular and overlapping topology. However, previous studies have never considered this factual characteristic. Thus, we propose a novel method by the integration of these inherent brain function activity pattern priors to estimate FC. Extensive experiments on synthetic data demonstrate that our method can more accurately estimate the FC than previous. Then, we applied the estimated FC to predict the symptom severity of depressed patients, the symptom severity is related to subtle abnormal changes in the brain function activity, a more accurate FC can more effectively capture the subtle abnormal brain function activity changes. As results, our method better than others with a higher correlation coefficient of 0.4201. Moreover, the overlapping probabilistic of each brain region can be further explored by the proposed method.Biological long short-term memory (B-LSTM) can effectively help human process all kinds of received information. In this work, a memristive B-LSTM circuit which mimics a conversion from short-term memory to long-term memory is proposed. That is, the stronger the signal, the more profound the memory and the higher the output. On this basis, an image binarization circuit using adaptive row threshold algorithm is proposed. It can make the image remain a deep impression on the strong pixel information and effectively filter the relatively weak pixel information. In combination with the function of image binarization, a memristive circuit for eyes state detection is proposed by adding corresponding horizontal projection calculation, subtraction calculation and judgement open or closed eyes modules. The proposed circuit can detect whether there is a blink between two adjacent facial images, which uses the characteristics of memristor to detect the difference of horizontal projection between two images. Due to the use of memristor, the proposed circuit can realize in-memory computing, which fundamentally avoids the problem of storage wall and shorten the execution time. Finally, an expectation application in fatigue driving based on the proposed method is demonstrated, which indicates the practicability of the circuit design in this work.In the last few years, accumulating evidences had demonstrated that long non-coding RNAs (lncRNAs) participated in the regulation of target gene expression and played an important role in biological processes and human disease development. Thus, prediction of the associations between lncRNAs and disease had become a hot research in the fields of human sophisticated diseases. Most of these methods considered the information of two networks (lncRNA, disease) while neglected other networks. In this study, we designed a multi-layer network by integrating the similarity networks of lncRNAs, diseases and genes, and the known association networks of lncRNA-disease, lncRNAs-gene, and disease-gene, and then we developed a model called MHRWR for predicting the lncRNA-disease potential associations based on random walk with restart. The performance of MHRWR was evaluated by experimentally verified lncRNA-disease associations based on leave-one-out cross validation. MHRWR obtained a reliable AUC value of 0.91344, which significantly outperformed some previous methods.
Homepage: https://www.selleckchem.com/products/iberdomide.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.