Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
aves fulfilling Koch's postulates. To our knowledge, this is the first report of leaf blight on C. GLPG1690 echinatus caused by P. pennisetigena in Paraguay. The occurrence of P. pennisetigena in the region and its ability to infect economically important crops such as wheat and barley (Klaubauf et al. 2014; Reges et al., 2016, 2018) pose a potential threat to agriculture in Paraguay.Banana (including plantain; Musa spp.) is a vegetatively propagated semi-perennial crop in fields and backyard gardens in Togo. Banana bunchy top disease (BBTD), caused by banana bunchy top virus (BBTV, genus Babuvirus) is the most economically important viral disease, infection of which causes severe stunting and production losses of 90-100% within two seasons. The virus is spread by banana aphid, Pentalonia nigronervosa, and through vegetative propagation from infected sources. BBTV occurrence was first reported in West Africa in 2011 with confirmation in Republic of Benin and in Nigeria in 2012 . A regional alliance (www.bbtvalliance.org) has been established for BBTV surveillance through frequent surveys in countries neighboring those affected, such as Togo. The surveys conducted in September 2018 in banana growing areas in Togo revealed plants with typical symptoms (severe stunting, bunchy growth with shortened petioles with chlorotic streaks and yellow leaf margins) in three banana fields. Locations wer of our knowledge this is the first case of rapid detection and eradication of BBTD in sub-Saharan Africa. This study illustrates the importance of regular surveillance for early detection of invasive virus threats and the value of rapid eradication to contain viruses before spread and establishment in a new territory.Sonchus oleraceus, common sow thistle, is native to Europe, Northern Africa, and Western Asia. This plant has become a common weed throughout the world. In Mexico, this weed has become widely naturalized by replacing indigenous plants and invading many agricultural areas. During the spring of 2018 and 2019, common sow thistle plants showing typical symptoms and signs of powdery mildew, were collected from agricultural fields in Ahome, Sinaloa, Mexico. As much as 30% of plants were diseased and 60 to 95% of the foliage was affected. Mycelium was conspicuous and white-gray, and on stems and both surfaces of leaves. Appressoria were nipple-shaped to crenulate. Conidiophores (n= 30) were hyaline, cylindrical, erect, and up to 150 μm long. Foot-cells (n= 30) were distinctly curved, 47 to 75 × 10 to 13 μm, slightly constricted, followed by 1-3 shorter cells and formed conidia in chains. Conidia (n= 100) were ellipsoid to doliiform to subcylindrical, 28 to 37 × 14 to 19 μm, lacked fibrosin bodies, and germinated froical data and phylogenetic analysis, the fungus was identified as G. sonchicola. This fungus has been reported causing powdery mildew on S. oleraceus in Germany, The Netherlands, Slovenia, and The United Kingdom (Farr and Rossman 2021). To the best of our knowledge, this is the first report of G. sonchicola causing powdery mildew on S. oleraceus in Mexico. This powdery mildew pathogen may represent an option for the biological control of common sow thistle.Smut fungi, such as Ustilago maydis, have been studied extensively as a model for plant- pathogenic basidiomycetes. However, little attention has been paid to smut diseases of agronomic importance that are caused by species of the fungus Thecaphora spp., probably due to their more localized distribution. Peanut smut by T. frezii has been reported only in South America, with Argentina being the only country where this disease has been noted in commercial species. In this work, important advances in deciphering T. frezii specific biology/pathobiology in relation to the agronomically relevant potato (T. solani), wheat (U. tritici) and barley (U. nuda) smuts are presented. The state of knowledge of fungal effectors, functionally characterized to date in U. maydis and most recently in T. thlaspeos, as well as the potential to be present in other Thecaphora species involved in dicot-host interactions like T. frezii-peanut, is summarized. We also discuss the applicability and limitations of current available methods for the identification of smut fungi in different matrices, and the management strategies to reduce their impact on the agri-food quality. To conclude, we describe some of the challenges in elucidating T. frezii strategies which allow it to successfully infect the host, and tolerate or evade plant immune defense mechanisms, as well as analysis of other aspects related to pest control and their implications for human health.Calonectria pseudonaviculata and Pseudonectria foliicola causing the infamous 'boxwood blight' and 'Volutella blight', respectively, are a constant threat to the boxwood production and cut boxwood greenery market. Both pathogens cause significant economic loss to all parties (growers, retailer, and customers) in the horticultural chain. The objective of this study was to evaluate efficacy of disinfesting chemicals [quaternary ammonium compound (QAC), peroxy, acid, alcohol, chlorine, cleaner] in preventing plant-to-plant transfer of C. pseudonaviculata and P. foliicola via cutting tools, as well as reduction of postharvest boxwood blight and Volutella blight disease severity in harvested boxwood greenery. First, an in vitro study was conducted to select products and doses that completely or near-completely inhibited conidial germination of C. pseudonaviculata and P. foliicola. The selected treatments were also tested for their ability to reduce plant-to-plant transfer of C. pseudonaviculata and P. foliicola anars. In addition to the three effective treatments above, acetic acid (2.5%) [Vinegar], 2-propanol + DDAC (0.06%), sodium hypochlorite (Clorox) and potassium peroxymonosulfate + NaCl (2%) [Virkon] were effective in reducing postharvest boxwood blight whereas DBAC + DBAC [Lysol all-purpose cleaner], ethanol [70% (Ethyl alcohol)] and DDAC +DBAC [Simple Green D Pro 3 plus] were effective in reducing Volutella blight disease severity and AUDPC, and also maintained better quality and longer postharvest shelf life of boxwood cuttings when applied as a dip treatment. The longer postharvest shelf life of boxwood cuttings noted may be attributed to reduced disease severity and AUDPC resulting in healthy boxwood cuttings.
Website: https://www.selleckchem.com/products/ziritaxestat.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team