Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Autophagy is a critical survival factor for cancer cells, whereby it maintains cellular homeostasis by degrading damaged organelles and unwanted proteins and supports cellular biosynthesis in response to stress. Cancer cells, including hepatocellular carcinoma (HCC), are often situated in a hypoxic, nutrient-deprived and stressful microenvironment where tumor cells are yet still able to adapt and survive. JNK inhibitor However, the mechanism underlying this adaptation and survival is not well-defined. We report deficiency of the post-translational modification enzyme protein arginine N-methyltransferase 6 (PRMT6) in HCC to promote the induction of autophagy under oxygen/nutrient-derived and sorafenib drug-induced stress conditions. Enhanced autophagic flux in HCC cells negatively correlated with PRMT6 expression, with the catalytic domain of PRMT6 critically important in mediating these autophagic activities. Mechanistically, PRMT6 physically interacts and methylates BAG5 to enhance the degradation of its interacting partner HSC70, a well-known autophagy player. The therapeutic potential of targeting BAG5 using genetic approach to reverse tumorigenicity and sorafenib resistance mediated by PRMT6 deficiency in HCC is also demonstrated in an in vivo model. The clinical implications of these findings are highlighted by the inverse correlative expressions of PRMT6 and HSC70 in HCC tissues. Collectively, deficiency of PRMT6 induces autophagy to promote tumorigenicity and cell survival in hostile microenvironments of HCC tumors by regulating BAG5-associated HSC70 stability through post-translational methylation of BAG5. Targeting BAG5 may therefore be an attractive strategy in HCC treatment by suppressing autophagy and inducing HCC cell sensitivity to sorafenib for treatment.Cancer stem cells (CSCs) are distinct subpopulations of cancer cells with stem cell-like abilities and are more resilient to chemotherapy, causing tumor relapse. Mitophagy, a selective form of autophagy, removes damaged unwanted mitochondria from cells through a lysosome-based degradation pathway to maintain cellular homeostasis. CSCs use mitophagy as a chief survival response mechanism for their growth, propagation, and tumorigenic ability. Mitochondrial biogenesis is a crucial cellular event replacing damaged mitochondria through the coordinated regulation of several transcription factors to achieve the bioenergetic demands of the cell. Because of the high mitochondrial content in CSCs, mitochondrial biogenesis is an interesting target to address the resistance mechanisms of anti-CSC therapy. However, to what extent both mitophagy and mitochondrial biogenesis are vital in promoting stemness, metabolic reprogramming, and drug resistance in CSCs has yet to be established. Therefore, in this review, we focus on understanding the interesting aspects of mitochondrial rewiring that involve mitophagy and mitochondrial biogenesis in CSCs. We also discuss their coordinated regulation in the elimination of CSCs, with respect to stemness and differentiation of the CSC phenotype, and the different aspects of tumorigenesis such as cancer initiation, progression, resistance, and tumor relapse. Finally, we address several other unanswered questions relating to targeted anti-CSC cancer therapy, which improves patient survival.The tumor microenvironment represents a dynamically composed matrix into which cancer cells and many other cell types are embedded to form organ-like structures. The tumor immune microenvironment (TIME), composed of immune cells, is an inseparable part of the tumor microenvironment. Extracellular vesicles (EVs) participate in the occurrence and development of tumors by delivering various biologically active molecules between cells; their role in cancer immune escape in particular has been widely proven. EVs can carry a wide array of cargo, such as non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, which are selectively loaded by EVs, secreted, and transported to participate in the proliferation of immune cells. Hence, strategies to specifically target EV-ncRNAs could be attractive therapeutic options. In this review, we summarize the current research on the role of EV-ncRNAs in cancer immune escape, and discuss the latest research on the function and regulation mechanism of EV-ncRNAs in cancer immune escape, highlighting and elucidating the potential clinical applications of EV-ncRNAs, including in diagnosis and immunotherapy.In this study, serine alkaline protease from halotolerant alkaliphilic Salipaludibacillus agaradhaerens strain AK-R was purified and immobilized onto double mesoporous core-shell silica (DMCSS) nanospheres. Covalent immobilization of AK-R protease onto activated DMCSS-NH2 nanospheres was more efficient than physical adsorption and was applied in further studies. DMCSS-NH2 nanospheres showed high loading capacity of 103.8 μg protein/mg nanospheres. Relative to free AK-R protease, the immobilized enzyme exhibited shifts in the optimal temperature and pH from 60 to 65 °C and pH 10.0 to 10.5, respectively. While the soluble enzyme retained 47.2% and 9.1% of its activity after treatment for 1 h at 50 and 60 °C, the immobilized protease maintained 87.7% and 48.3%, respectively. After treatment for 2 h at pH 5 and 13, the immobilized protease maintained 73.6% and 53.4% of its activity, whereas the soluble enzyme retained 32.9% and 1.4%, respectively. Furthermore, the immobilized AK-R protease showed significant improvement of enzyme stability in high concentration of NaCl, organic solvents, surfactants, and commercial detergents. In addition, the immobilized protease exhibited a very good operational stability, retaining 79.8% of its activity after ten cycles. The results clearly suggest that the developed immobilized protease system is a promising nanobiocatalyst for various protease applications.According to the World Health Organization, nearly a billion people do not have incoming to pure drinking water and much of that water is contaminated with high levels of heavy elements. In this study, adsorption of lead ions has been studied by nanocomposites which prepared through acrylic acid grafting and amino-functionalized magnetized (FM-NPs) TEMPO-oxidized cellulose nanofiber (TEMPO-CNF). The amino-functionalized magnetite was acting as a crosslinked. The crystallinity of TEMPO-CNF was 75 with a 4-10 nm diameter range, while the average particle size of FM-NPs was 30 nm. The adsorption studies illustrated that the elimination efficiency of lead ions was 80% by the prepared nanocomposite that includes a minimum amount of crosslinker (1%), which demonstrated that the magnetic grafted oxidized cellulose nanofiber nanocomposite is a promising green adsorbent material to eliminate heavy metal ions and is additionally easy to get rid of due to its magnetic property. The kinetics and isotherms studied found that the sorption reaction follows a pseudo-second-order model (R2 = 0.
Website: https://www.selleckchem.com/JNK.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team