NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Risky decision making from childhood through their adult years: Contributions involving understanding and also sensitivity to damaging suggestions.
Transient electrophysiological anomalies in the human brain have been associated with neurological disorders such as epilepsy, may signal impending adverse events (e.g, seizurse), or may reflect the effects of a stressor, such as insufficient sleep. These, typically brief, high-frequency and heterogeneous signal anomalies remain poorly understood, particularly at long time scales, and their morphology and variability have not been systematically characterized. In continuous neural recordings, their inherent sparsity, short duration and low amplitude makes their detection and classification difficult. In turn, this limits their evaluation as potential biomarkers of abnormal neurodynamic processes (e.g., ictogenesis) and predictors of impending adverse events. A novel algorithm is presented that leverages the inherent sparsity of high-frequency abnormalities in neural signals recorded at the scalp and uses spectral clustering to classify them in very high-dimensional signals spanning several days. It is shown that estimated clusters vary dynamically with time and their distribution changes substantially both as a function of time and space.Vagal Nerve Stimulation (VNS) is an option in the treatment of drug-resistant epilepsy. However, approximately a quarter of VNS subjects does not respond to the therapy. In this retrospective study, we introduce heart-rate features to distinguish VNS responders and non-responders. Standard pre-implantation measurements of 66 patients were segmented in relation to specific stimuli (open/close eyes, photic stimulation, hyperventilation, and rests between). Median interbeat intervals were found for each segment and normalized (NMRR). Five NMRRs were significant; the strongest feature achieved significance with p=0.013 and AUC=0.66. Low mutual correlation and independence on EEG signals mean that presented features could be considered as an addition for models predicting VNS response using EEG.The study of working memory (WM) is a hot topic in recent years and accumulating literatures underlying the achievement and neural mechanism of WM. However, the effect of WM training on cognitive functions were rarely studied. In this study, nineteen healthy young subjects participated in a longitudinal design with one week N-back training (N=1,2,3,4). Experimental results demonstrated that training procedure could help the subjects master more complex psychological tasks when comparing the pre-training performance with those post-training. More specifically, the behavior accuracy increased from 68.14±9.34%, 45.09±14.90%, 39.12±12.71%, and 32.11±10.98% for 1-back, 2-back, 3-back and 4-back respectively to 73.52±4.01%, 69.14±5.28%, 69.09±6.41% and 64.41±5.12% after training. Furthermore, we applied electroencephalogram (EEG) power and functional connectivity to reveal the neural mechanisms of this beneficial effect and found that the EEG power of δ, θ and α band located in the left temporal and occipital lobe increased significantly. Meanwhile, the functional connectivity strength also increased obviously in δ and θ band. check details In sum, we showed positive effect of WM training on psychological performance and explored the neural mechanisms. Our findings may have the implications for enhancing the performance of participants who are prone to cognitive.It is a hot research direction to reveal the working mechanism of brain by measuring the connection characteristics of brain function network. In this paper, to decode pigeon behavior outcomes in goal-directed decision task, an experiment based on plus maze was designed and the nidopallium caudolaterale (NCL) of the pigeon was selected as the target brain region. The local field potential (LFP) signals in the waiting area (WA) and turning area (TA) were recorded when the pigeons performed the goal-directed tasks. Then, the brain functional connection networks of the LFPs were constructed and the extracted features were applied to decode pigeon behavior outcomes. Firstly, continuous wavelet transform (CWT) was used to carried out time-frequency analysis and the task-related frequency band (40-60 Hz) was extracted. Then, weighted sparse representation (WSR) method was used to construct the functional connectivity network and the related network features were selected. Finally, k-nearest neighbor (kNN) algorithm was used to decode behavior outcomes. The results show that the energy difference between TA and WA in 40-60 Hz band is significantly higher than those in other bands. The selected features have good discriminability for the representation of the differences between WA and TA. The decoding results also suggest the classification performance of the different behavior outcomes. These results show the effectiveness of the WSR to construct the function network to decode behavior outcomes.The EEG has showed that contains relevant information about recognition of emotional states. It is important to analyze the EEG signals to understand the emotional states not only from a time series approach but also determining the importance of the generating process of these signals, the location of electrodes and the relationship between the EEG signals. From the EEG signals of each emotional state, a functional connectivity measurement was used to construct adjacency matrices lagged phase synchronization (LPS), averaging adjacency matrices we built a prototype network for each emotion. Based on these networks, we extracted a set node features seeking to understand their behavior and the relationship between them. We found through the strength and degree, the group of representative electrodes for each emotional state, finding differences from intensity of measurement and the spatial location of these electrodes. In addition, analyzing the cluster coefficient, degree, and strength, we find differences between the networks from the spatial patterns associated with the electrodes with the highest coefficient. This analysis can also gain evidence from the connectivity elements shared between emotional states, allowing to cluster emotions and concluding about the relationship of emotions from EEG perspective.
My Website: https://www.selleckchem.com/products/AZD5438.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.