Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
CONCLUSION This study establishes that betel nut induces dyslipidemia through its alkaloid, arecoline by inhibition of AMPK (Thr-172) and activation of ACC (Ser-79) and highlights the therapeutic potential of metformin for treatment of betel-nut induced carcinogenesis, indicating the repurposing of the old drug in a new avenue.BACKGROUND Our group has previously shown that short-term treatment (48 h) with esmolol reduces left ventricular hypertrophy (LVH) in spontaneously hypertensive rats (SHRs). However, we do not know the mechanism that explain this effect. The aim of this study was to assess the role that the subcellular organelle phenotype plays in early cardiac reverse after short-term treatment with esmolol. METHODS 14-Month-old male SHRs were randomly assigned to receive esmolol (300 μg/kg/min) (SHR-E) or vehicle (SHR). Age-matched male Wistar-Kyoto rats (WKY) served as controls. After 48 h of treatment, an ultrastructural analysis of heart tissue (left ventricle) was performed. We studied cardiomyocyte ultrastructural remodeling of subcellular organelles by electronic microcopy in all groups. RESULTS SHR group showed significant morphometric and stereological changes in mitochondria and subcellular organelles (cytoplasm and nucleus, myofibril structure, mitochondria structure, Z-Disk, intercalated disk, T-system and cystern), and also changes in the extracellular matrix (collagen) with respect to WKY group. Esmolol significantly improved the morphology and stereology mitochondrial, reduced the organelle phenotype abnormalities but no produced changes in the extracellular matrix with respect to SHR group. Interesantly, parameters of mitochondria (regularity factor, ellipsoidal form factor and density of volume), and all parameters of subcellular organelles returned to the normality in SHR-E. CONCLUSION Our results show that left ventricular hypertrophy reversal after short-term treatment with esmolol is associated with reversal of subcellular organelle phenotype.BACKGROUND Recent studies demonstrated the reno-protective effects of two dipeptidyl peptidase-4 (DPP-4) inhibitors, saxagliptin and sitagliptin, against gentamycin-induced renal injury. However, none of these studies investigated whether renal DPP-4 contributes to the pathogenesis of this nephrotoxicity or not. This prompted us to test this hypothesis and to assess, for the first time, the potential reno-protective effect of linagliptin and whether this action is related or not to DPP-4 inhibition. Lingliptinwas chosen since it is mainly excreted through a non-renal pathway and can therefore be used safely in individuals with renal injury. METHODS Male Sprague-Dawley rats were administered gentamycin (100 mg/kg/day, ip for 10 days) alone or combined with linagliptin (3 mg/kg/day, orally for 14 days). Gentamycin was administered once daily during the last ten days of the linagliptin treatment. RESULTS Linagliptin administration ameliorated gentamycin-induced renal injury and restored renal functional, oxidative, inflammatory, apoptotic and histopathological changes. Furthermore, the current study highlighted the role of increased plasma and renal DPP-4 in the pathogenesis of gentamycin renal insults and showed that the potential reno-protective effect of linagliptin is partly, mediated via inhibition of DPP-4, in addition to other antioxidant, anti-inflammatory and anti-apoptotic actions. CONCLUSION Linagliptin may serve as a beneficial adjutant to reduce gentamycin-induced renal injury.BACKGROUND 1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) demonstrates significant neuroprotective activity. It can interact with agonistic conformation of dopamine (DA) receptors.1MeTIQ inhibits the formation of 3,4-dihydroxyphenylacetic acid as well as production of free radicals and shifts DA catabolism toward COMT-dependent O-methylation. 1MeTIQ inhibits both MAO-A and B enzymes activity and increases neurotransmitters levels inthe brain. It shows significant antidepressant-like effect in forced swim test (FST) in rats. This compound might be effective for depression therapy in a clinical setting but its success is determined not only by good efficacy, but also by an acceptable its ADMET profile. The use of combination in silico prediction with in vivoand in vitro studies greatly simplifies the search for new, safer and effectively acting drugs. METHODS The aim of this study was to investigate the degree of histopathological changes in different rats tissues after acute and chronic administration of 1MeTIQ. Additionally, prediction of its properties in terms of absorption, distribution, metabolism, elimination and toxicity in the human body was performed. RESULTS The obtained data did not show extensive and significant toxic effects of tested substance in in vivo and in vitro studies in rats, and in silico ADMET prediction. CONCLUSIONS These results can help to discover a new effective and safe antidepressant substance and have important significance in the treatment ofdepression in clinic. find more Additionally, the usein the treatment of depression substance with neuroprotective, antioxidant and antidepressant-like effects in the CNS and existing endogenously might be also beneficial in controlling the adverse CNS inflammatory processes accompanying depression.BACKGROUND The orexin system regulates various functions, including sleep/wake cycles, feeding, and cognition. Orexin A and orexin B are endogenous neuropeptides for both orexin 1 (OX1) and orexin 2 (OX2) receptors. Orexin A has a potent agonistic activity for both the receptors and is known to increase locomotor activity in rats. However, it has not been elucidated how each receptor contributes to orexin A-induced hyperlocomotion. METHODS We examined the effects of an OX1 receptor antagonist, SB 334867, and an OX2 receptorantagonist, EMPA, as well as an OX1 and OX2 receptor antagonist on hyperlocomotion caused by intracerebroventricular administration of orexin A or an OX2 receptor agonist, ADL-OXB ([Ala11, D-Leu15]-orexin B), in rats. RESULTS EMPA (100 mg/kg, ip) but not SB 334867 (3-10 mg/kg, ip) showed antagonistic effects on ADL-OXB-induced hyperlocomotion without affecting the spontaneous locomotor activity. Both EMPA (100 mg/kg, ip) and the OX1 and OX2 receptor antagonist (3-30 mg/kg, po) antagonized orexin A-induced hyperlocomotion, while SB 334867 (3-10 mg/kg, ip) showed no effects.
Homepage: https://www.selleckchem.com/products/osmi-4.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team