Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
us fertilizer application intensity in the study area. Therefore, the comprehensive effects of planting crop types and soil parent materials should be considered in fertilization management and environmental risk analysis, and the effects of soil parent material should also be taken into account in the application of phosphate fertilizer.In this study, soil samples were collected from the eastern edge of the Qinghai Tibet Plateau in December 2019. The level and distribution characteristics of organophosphate esters (OPEs) in seasonal frozen soil were analyzed, and their sources were discussed. The results showed that the target analytes including tri-n-butyl phosphate (TnBP), tris(2-ethylhexyl) phosphate (TEHP), tributoxyethyl phosphate (TBEP), triphenyl phosphate (TPhP), tri(2-chloroethyl) phosphate (TCEP), trichloropropyl phosphate (TCPP), and tris-(2,3-dichloropropyl) phosphate (TDCPP) were detected with 100% frequency. Levels of Σ7OPEs in topsoil (0-10 cm) and sub topsoil (10-20 cm) were 146.7-348.7 ng·g-1 (mean231.1 ng·g-1) and 206.5-333.2 ng·g-1 (mean260.2 ng·g-1), respectively. The Σ7OPEs content level is comparable to that of urban soil,which is worthy of attention. TBEP and TDCPP were the most abundant compounds in the plateau soil. Point source emissions have significant influence on the spatial distribution of OPEs, and regional deposition of OPEs contributes to all sampling sites. The migration ability of different OPE compounds in soil was different. Stronger migration ability was observed for aromatic OPEs (TPhP) than chlorinated OPEs. Principal component analysis showed that the main sources of OPEs in plateau soil were atmospheric wet and dry deposition, manufactured consumer materials, and the release of OPEs from automobile interior decoration.Two iron-based materials, Fe-Ca composite (FeCa) and Fe-Mn binary oxide (FMBO), were applied to immobilize As, Pb, and Cd in heavy metal contaminated paddy soils. Seven kinds of paddy soil (tidal soil) contaminated by arsenic, lead and cadmium were collected from Shangyu, Shaoxing (SY), Foshan, Guangdong (FS), Shaoguan, Guangdong (SG), LiuYang, Hunan (LY), Ganzhou, Jiangxi (GZ), Dushan, Guizhou (DS), and Ma'anshan, Anhui (MAS). The effects of iron-based materials on the dynamic changes of As, Pb, and Cd concentration in soil solution, the stabilization efficacy of available As, Pb, and Cd in soil, and the effects of soil types and properties on stabilization efficacy were studied through soil incubation experiment. selleck chemicals llc The results showed that the content of soil dissolved As, Pb, and Cd were lower in iron-based material treatments than in control throughout the incubation. The addition of two iron-based materials significantly reduced the availability of Cd, Pb, and As. Moreover, the stabilization efficiency of FeCa for As was higher than FMBO, but no significant difference was found in the stabilization efficiency of Pb and Cd between two materials. The stabilization efficiency of As, Pb, and Cd in FeCa treatments could be ordered as GZ > SG > DS and MAS; FS>SY, LY, and SG>MAS; SY, GZ, and DS>MAS, respectively. While the stabilization efficiency for As, Pb, and Cd in FMBO could be ordered as SY, LY, and GZ > DS > FS; FS > GZ > SY; DS > LY > MAS, respectively. In addition, the statistical results showed that the stabilization efficiencies of various soils under the treatment of iron-based materials were significantly correlated with sand content (negatively correlated for As), soil pH (positively correlated for Pb), and clay content (negatively correlated for Cd). In conclusion, the two iron-based materials evaluated in this study may be effective stabilization agents for remediating different types of arsenic-, lead-, and cadmium-contaminated soils.Simultaneously reducing the availability of Cd and As is difficult owing to converse chemical behaviors of Cd and As in soil. In this study, amendments that can simultaneously immobilize Cd and As in soil were determined by an pure soil culture experiment in which flooding and wetting were performed for 30 d each. The effects of sepiolite (Sep), modified sepiolite (IMS and Sep-FM), steel slag (SS), and iron modified biochar (Fe-Bio) on soil pH, Eh, Cd, and As concentrations in pore water, and Cd and As fractions in soil were investigated. It showed that Sep (1%, 2.5%), IMS (1%, 2.5%), Sep-FM (1%, 2.5%), and SS (1%, 5%) treatments increased soil pH value and decreased Eh value and Cd concentrations in soil solution. In addition, As concentrations in soil solution treated with high doses of IMS (2.5%) and SS (5%) were lower than that of CK treatment during the whole incubation period. However, Fe-bio treatment decreased soil pH and increased Eh value and only decreased Cd and As concentrations in soil solution under wet conditions. Compared with the control, the application of the above amendments promoted the transformation of Cd fraction from exchangeable to reducible, oxidizable, and residual. High application rates of IMS (2.5%), Sep-FM (2.5%), and SS (5%) also reduced available As fraction (non-specifically sorbed and specifically-sorbed As fraction), and increased amorphous and poorly-crystalline hydrated Fe and Al oxide-bound As. On the contrary, Fe-bio treatment increased the fractions of non-specifically sorbed, specifically sorbed and residual As in soil. In short, IMS, Sep-FM, and SS are potential materials for remediation of Cd and As contaminated soil. They can effectively immobilize soil Cd and As and promote their transformation to the fractions that plants are difficult to uptake.Research on the characteristics of environmental background values of soil can provide a scientific basis for setting regional standards for soils. To determine the characteristics of environmental background values and main influencing factors of heavy metals (Cr, Cu, Zn, Ni, Pb, Co, V, Cd, and Hg) in soils in Shenzhen, 500 topsoil samples (0-20 cm) were collected by decision unit multi increment sampling (DUMS) from 500 soil background sites in the whole city, including 405 latosolic red soil, 77 red soil, and 18 yellow soil samples. The results show that the concentrations of heavy metals in red soil are relatively low in general, and those of Cr, Ni, Co, and V in latosolic red soil and Cu, Zn, Hg, Pb, and Cd in yellow soil are higher. Compared with the environmental background values of soil in the Seventh Five-year Plan of China in 1980s, the concentrations of Cr, Cu, Zn, Ni, Co, and V in latosolic red soil, red soil, and yellow soil are lower, the concentrations of Cd and Hg are similar, and the concentration of Pb is higher.
Read More: https://www.selleckchem.com/products/compound-3i.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team