Notes
![]() ![]() Notes - notes.io |
Herein, we report two autologous phosphates obtained from the same parent material for electrocatalytic water oxidation. These two phosphates have many similarities except the coordination structure of the Mn centers. It has been straightforwardly observed that the highly asymmetric geometry of Mn2P2O7 can stabilize the active Mn(iii) to promote water oxidation.This study investigated the effects of germinated millet flour on adipogenesis, insulin resistance, glucose tolerance and thyroid function in Wistar rats fed with a high-fat high-fructose diet (HFHF). The experiment was divided into two phases. Phase 1 control group, which received an AIN-93M diet (n = 10) and HFHF group (n = 20), which received a diet rich in saturated fat (31%) and fructose (20%), for eight weeks. Phase 2 intervention the control group maintained the AIN-93M diet (n = 10) and the HFHF group was divided into two groups the HFHF (n = 10) and the germinated millet group (n = 10), for 10 weeks. The germinated millet flour maintained (p > 0, 05) the plasma levels of thyroid hormones, increased (p less then 0.05) the insulin receptor (INSR) mRNA expression, protein kinase B (AKT) mRNA expression and the phospho-AKT1 protein concentration, phosphofructokinase (PFK) mRNA, pyruvate kinase (PK) mRNA and activated protein kinase (AMPK) mRNA expression, and the brown adipose tissue and reduced (p less then 0.05) the glucose triglyceride index (TyG), glucose, insulin, HOMA-IR and hypercorticosteronemia, compared to the HFHF group. These effects contributed to reduce the gluconeogenesis, hyperinsulinemia and adiposity. Thus, germinated millet flour is a good alternative for modulating the adipogenesis and glucose metabolism, without interfering with the thyroid hormones, in rats with an insulin resistance condition with a high-fat high-fructose diet.Magnetic particle imaging (MPI) has recently emerged as a promising non-invasive imaging technique because of its signal linearly propotional to the tracer mass, ability to generate positive contrast, low tissue background, unlimited tissue penetration depth, and lack of ionizing radiation. The sensitivity and resolution of MPI are highly dependent on the properties of magnetic nanoparticles (MNPs), and extensive research efforts have been focused on the design and synthesis of tracers. This review examines parameters that dictate the performance of MNPs, including size, shape, composition, surface property, crystallinity, the surrounding environment, and aggregation state to provide guidance for engineering MPI tracers with better performance. Finally, we discuss applications of MPI imaging and its challenges and perspectives in clinical translation.Prevention of bacterial infection, acceleration of wound closure and promotion of skin regeneration are crucial in the wound healing process. In this work, the photothermal activity of an injectable thermosensitive composite hydrogel based on hydroxypropyl chitin (HPCH), tannic acid (TA) and ferric ions (Fe3+) was studied. It was found that the photothermal efficiency was enhanced when the molar ratio of Fe3+/TA increased up to 20. The composite hydrogel possessed good cytocompatibility and hemocompatibility with a low dosage of the antibacterial agent TA. selleck In vitro and in vivo antibacterial tests showed that the HPCH/TA/Fe hydrogel possessed an effective and rapid bactericidal effect with 10 minutes of near-infrared laser irradiation. Furthermore, the combination of a low-level laser therapy with the hydrogel is conducive to the acceleration of wound closure and promotion of skin tissue repair. Thus, the injectable photothermally active antibacterial composite hydrogel has great potential for the infected skin wound regeneration in clinical applications.Understanding the behavior and biological fate of silver nanoparticles (AgNPs) applied on plant surfaces is significant for their risk assessment. Our study's objective is to investigate the interactions between AgNPs and plant biomolecules as well as to monitor and quantify the penetration of AgNPs in spinach by an in situ and real-time surface enhanced Raman spectroscopic (SERS) mapping technique. AgNPs (2 μg per leaf) of different surface coatings (citrate, CIT, and polyvinylpyrrolidone, PVP) and sizes (40 and 100 nm) were foliarly applied onto spinach leaves with different exposure times (1-48 h). Cysteine is the major biomolecule that interacts with AgNPs in spinach based on the in situ and in vitro SERS pattern recognition. The interaction between CIT-AgNPs and cysteine happened in as early as 1 h after AgNP foliar deposition, which is faster than the interaction between PVP-AgNPs and cysteine. Also, the SERS depth mapping shows that particle size rather than surface coating determines the penetration capability of AgNPs in spinach, in which 40 nm AgNPs show a deeper penetration than the 100 nm ones. Last but not least, based on the results of SERS mapping, we detected significantly higher amounts of 40 nm CIT-/PVP-AgNPs than 100 nm CIT-AgNPs internalized in the leaf tissues after 1 h exposure. The estimated percentage of internalized AgNPs (0.2-0.8%) was significantly smaller than that of the total residual Ag (9-12%), indicating the potential transformation of the AgNPs into other Ag species inside the plant tissues. This study facilitates a better understanding of the behavior and biological fate of AgNPs in plant tissues.Acute and chronic wounds can cause severe physical trauma to patients and also result in an immense socio-economic burden. Thus, wound management has attracted increasing attention in recent years. However, burn wound management is still a major challenge in wound management. Autografts are often considered the gold-standard for burn care, but their application is limited by many factors. Hence, ideal burn dressings and skin substitute dressings are desirable. With the development of biomaterials and progress of tissue engineering technology, some innovative dressings and tissue engineering scaffolds, such as nanofibers, films, foams and hydrogels, have been widely used in the field of biomedicine, especially in wound management. Among them, hydrogels have attracted tremendous attention with their unique advantages. In this review, we discuss the challenges in burn wound management, several crucial design considerations with respect to hydrogels for burn wound healing, and available polymers for hydrogels in burn wound care.
My Website: https://www.selleckchem.com/products/sodium-oxamate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team