Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Experiments conducted on three real-world benchmarks, demonstrating CAN performs favorably against previous state-of-the-arts.Transformation Equivariant Representations (TERs) aim to capture the intrinsic visual structures that equivary to various transformations by expanding the notion of translation equivariance underlying the success of Convolutional Neural Networks (CNNs). For this purpose, we present both deterministic AutoEncoding Transformations (AET) and probabilistic AutoEncoding Variational Transformations (AVT) models to learn visual representations from generic groups of transformations. While the AET is trained by directly decoding the transformations from the learned representations, the AVT is trained by maximizing the joint mutual information between the learned representation and transformations. This results in Generalized TERs (GTERs) equivariant against transformations in a more general fashion by capturing complex patterns of visual structures beyond the conventional linear equivariance under a transformation group. The presented approach can be extended to (semi-)supervised models by jointly maximizing the mutual information of the learned representation with both labels and transformations. Experiments demonstrate the proposed models outperform the state-of-the-art models in both unsupervised and (semi-)supervised tasks. Moreover, we show that the unsupervised representation can even surpass the fully supervised representation pretrained on ImageNet when they are fine-tuned for the object detection task.The explosive growth in video streaming requires video understanding at high accuracy and low computation cost. Conventional 2D CNNs are computationally cheap but cannot capture temporal relationships; 3D CNN based methods can achieve good performance but are computationally intensive. In this paper, we propose a generic and effective Temporal Shift Module (TSM) that enjoys both high efficiency and high performance. The key idea of TSM is to shift part of the channels along the temporal dimension, thus facilitate information exchanged among neighboring frames. It can be inserted into 2D CNNs to achieve temporal modeling at zero computation and zero parameters. TSM offers several unique advantages. Firstly, TSM has high performance; it ranks the first on the Something-Something leaderboard upon submission. Secondly, TSM has high efficiency; it achieves a high frame rate of 74fps and 29fps for online video recognition on Jetson Nano and Galaxy Note8. Thirdly, TSM has higher scalability compared to 3D networks, enabling large-scale Kinetics training on 1,536 GPUs in 15 minutes. Lastly, TSM enables action concepts learning, which 2D networks cannot model; we visualize the category attention map and find that spatial-temporal action detector emerges during the training of classification tasks. The code is publicly available.In myoelectric machine learning (ML) based control, it has been demonstrated that control performance usually increases with training, but it remains largely unknown which underlying factors govern these improvements. It has been suggested that the increase in performance originates from changes in characteristics of the Electromyography (EMG) patterns, such as separability or repeatability. However, the relation between these EMG metrics and control performance has hardly been studied. We assessed the relation between three common EMG feature space metrics (separability, variability and repeatability) in 20 able bodied participants who learned ML myoelectric control in a virtual task over 15 training blocks on 5 days. We assessed the change in offline and real-time performance, as well as the change of each EMG metric over the training. Subsequently, we assessed the relation between individual EMG metrics and offline and real-time performance via correlation analysis. Last, we tried to predict real-time performance from all EMG metrics via L2-regularized linear regression. Results showed that real-time performance improved with training, but there was no change in offline performance or in any of the EMG metrics. ESI-09 cell line Furthermore, we only found a very low correlation between separability and real-time performance and no correlation between any other EMG metric and real-time performance. Finally, real-time performance could not be successfully predicted from all EMG metrics employing L2-regularized linear regression. We concluded that the three EMG metrics and real-time performance appear to be unrelated.Feature selection for predictive analytics is the problem of identifying a minimal-size subset of features that is maximally predictive of an outcome of interest. To apply to molecular data, feature selection algorithms need to be scalable to tens of thousands of features. In this paper, we propose γ-OMP, a generalisation of the highly-scalable Orthogonal Matching Pursuit feature selection algorithm. γ-OMP can handle (a) various types of outcomes, such as continuous, binary, nominal, time-to-event, (b) discrete (categorical) features, (c) different statistical-based stopping criteria, (d) several predictive models (e.g., linear or logistic regression), (e) various types of residuals, and (f) different types of association. We compare γ-OMP against LASSO, a prototypical, widely used algorithm for high-dimensional data. On both simulated data and several real gene expression datasets, γ-OMP is on par, or outperforms LASSO in binary classification (case-control data), regression (quantified outcomes), and time-to-event data (censored survival times). γ-OMP is based on simple statistical ideas, it is easy to implement and to extend, and our extensive evaluation shows that it is also effective in bioinformatics analysis settings.Gene regulatory networks (GRNs) are involved in various biological processes, such as cell cycle, differentiation and apoptosis. The existing large amount of expression data, especially the time-series expression data, provide a chance to infer GRNs by computational methods. These data can reveal the dynamics of gene expression and imply the regulatory relationships among genes. However, identify the indirect regulatory links is still a big challenge as most studies treat time points as independent observations, while ignoring the influences of time delays. In this study, we propose a GRN inference method based on information-theory measure, called NIMCE. NIMCE incorporates the transfer entropy to measure the regulatory links between each pair of genes, then applies the causation entropy to filter indirect relationships. In addition, NIMCE applies multi time delays to identify indirect regulatory relationships from candidate genes. Experiments on simulated and colorectal cancer data show NIMCE outperforms than other competing methods.
My Website: https://www.selleckchem.com/products/esi-09.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team