Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Hospital-acquired infections and thrombosis caused by bacteria attached to the device surface, or fibrin crosslinking owing to platelet accumulation/activation, are major healthcare challenges that cause morbidity and mortality. To prevent these, surface coating technologies are considered an efficient tool that can combine hemocompatibility and bactericidal activity. In this study, surface-initiated polymerization was conducted to form an all-in-one hydrogel coating that could adapt to diverse medical devices. check details Different monomer ratios (acrylamide/acrylic acid) were used to adjust the antimicrobial agent loading capacity. The hydrogel coating obtained by a simple dip-absorbing method showed good hemocompatibility and maintained efficient bactericidal activity. We also explored the loading and release of antimicrobial agents with different molecular sizes, including nano-Ag particles, antibiotics, and antimicrobial peptides. The inhibition zone test and confocal laser scanning microscopy revealed that the hydrogel coating could maintain remarkable antimicrobial and antifouling properties for four weeks. Furthermore, the hydrogel coating decreased the platelet adhesion/activation without risk of hemolysis. The ex vivo blood circulation study confirmed the antithrombotic properties of the hydrogel coating. Such all-in-one hydrogel coatings that maintain high cell viability and exhibit both hemocompatibility and bactericidal activity possess the potential for applications in blood-contacting devices.Lacunary polyoxometalate (POM), [PW9O34]9-, grafts with a boronic acid group attached via an organosilane bridge assemble into microspheres, PW9-Si-APBA. The oxygen-rich and hydrophilic surface of POM facilitates the binding of phosphate groups in phosphoproteins and glycans in glycoproteins. While the metal-oxo in POM provides π-π interactions with the phosphate groups of phosphoproteins, the boronic acid group specifically binds to glycoproteins via the cis-diols of glycans. Therefore, these multi-driving forces ensure the selective adsorption of phosphoproteins and glycoproteins by PW9-Si-APBA microspheres in biological sample matrixes, even in the presence of very high protein abundance, i.e., BSA, at mass ratio of β-ca/IgG/OVA/BSA = 1 1 1 200.The advent of multicomponent reactions in the synthesis of heterocycles and their ever burgeoning applications in drug development, materials chemistry, and catalysis, have attracted a great deal of current scientific interest. In particular, the metal-free multicomponent synthesis of six membered N-heterocycles has undergone intensive research over the last two decades offering an environmentally benevolent means contrary to traditional metal catalysed reactions. To the best of our knowledge, there exists no exclusive review on the metal-free multicomponent synthesis of six membered N-heterocyles, and hence the present report highlights the progress on metal-free multicomponent reactions with their advantages and mechanistic insights to access monocyclic six-membered N-heterocycles including pyridine, pyrimidine, pyrazine, triazine and their hydrogenated derivatives. The literature is covered since 2000, and the contents offer not only striking methods for divergent synthesis of six-membered N-heterocycles but also put forward some new insights into the exploration of metal-free multicomponent chemistry.Strong nonspecific protein/cell adhesion on conducting polymer (CP)-based bioelectronic devices can cause an increase in the impedance or the malfunction of the devices. Incorporating oligo(ethylene glycol) or zwitterionic functionalities with CPs has demonstrated superior performance in the reduction of nonspecific adhesion. However, there is no report on the evaluation of the antifouling stability of oligo(ethylene glycol) and zwitterion-functionalized CPs under electrical stimulation as a simulation of the real situation of device operation. Moreover, there is a lack of understanding of the correlation between the molecular structure of antifouling CPs and the antifouling and electrochemical stabilities of the CP-based electrodes. To address the aforementioned issue, we fabricated a platform with antifouling poly(3,4-ethylenedioxythiophene) (PEDOT) featuring tri(ethylene glycol), tetra(ethylene glycol), sulfobetaine, or phosphorylcholine (PEDOT-PC) to evaluate the stability of the antifouling/electrochemical properties of antifouling PEDOTs before and after electrical stimulation. The results reveal that the PEDOT-PC electrode not only exhibits good electrochemical stability, low impedance, and small voltage excursion, but also shows excellent resistance toward proteins and HAPI microglial cells, as a cell model of inflammation, after the electrical stimulation. The stable antifouling/electrochemical properties of zwitterionic PEDOT-PC may aid its diverse applications in bioelectronic devices in the future.This review details the isolation, biosynthesis, biological activity and synthesis of spiroacetals from the myxobacterium Sorangium cellulosum. The strategies utilised to access the challenging structures and stereochemistry of these natural products are highlighted.In this study, we report an ab initio screening, based on density functional theory calculations, of Pt-based transition-metal nanoalloys using physicochemical descriptors derived from the adsorption and activation of CO2 on 55-atom nanoclusters, namely, PtnTM55-n, with n = 0, 13, 42, 55, TM = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Au. From the adsorption on the unary and binary nanoclusters, at the chemisorption regime (bent CO2), we identified a linear correlation between the interaction energy and charge transfer from the nanoclusters towards CO2 and the bent CO2 angle; moreover, the interaction energy is enhanced for larger values of the molecular charge and angle. The alloying of Cu55, Ag55, and Au55 with Pt provides a path to change the CO2 adsorption from physisorption (linear, non-activated) to chemisorption (enhanced interaction energies, bent, activated), while the strong interaction energy of CO2 with Os55, Ru55, and Fe55 can be decreased by alloying with Pt using different structural configurations, i.
Read More: https://www.selleckchem.com/products/sn-52.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team