Notes
![]() ![]() Notes - notes.io |
Demographic parameters, including net reproductive rate, were lower in the Imida-RS strain than in SS and CR2 D. koenigii. Similarly, the Imida-RS and CR1 strains had shorter generation time and doubling time, lower reproductive value and life expectancy relative to the SS and CR2 D. koenigii. In addition, age-specific fecundity was negatively affected in the CR1 strain compared with the other strains. These findings could help facilitate the development of rational D. koenigii control strategies.Among the diverse archeological relics of the past, the Cartagena de Indias Wall is one of the greatest representations of European cultural architecture in South America. To assess the implication of contamination on the depreciation of the culturally significant Wall of Cartagena de Indias - Colombia, a detailed, multi-analytical approach was conducted on components of the wall. Accumulated ultra-fine particles (UFPs) and superficial nano-particles (NPs) containing hazardous elements (HEs) on the wall were identified in an attempt to understand whether atmospheric pollution is hastening the depreciation of the structure itself. Mortar which at one point held the stones together is now weak and has fallen away in places. Irreparable damage is being done by salt spray, acid rain and the site's tropical humid climate. Several HEs and organic compounds found within the local environment are also contributing to the gradual deterioration of the construction. In this study, advanced microscopy analyses have been applied to understand the properties of UFPs and NPs deposited onto the wall's weathered external walls through exposure to atmospheric pollution. Several materials identified by X-Ray Diffraction (XRD) can be detected using high-resolution transmission electron microscopy (HR-TEM) and field emission scanning electron microscope (FE-SEM). The presence of anglesite, gypsum, hematite containing HEs, and several organic compounds modified due to moisture and contamination was found. Black crusts located on the structure could potentially serve as a source of HEs pollution and a probable hazard to not only to the ecosystem but also to human health.The aim of this study was to investigate pH effect on stratification of bacterial community in cathodic biofilm of the microbial fuel cell (MFC) under alkaline conditions. A single-chamber MFC with air-cathode was operated with 0.8 g/L maltodextrin and bicarbonate buffer solutions under pH values of 8.5, 9.5, and 10.5, respectively. The cathodic biofilms were characterized by linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), confocal laser scanning microscopy (CLSM), freezing microtome and high-throughput sequencing analysis on bacterial communities, respectively. Results showed that the maximum power densities in the MFC increased with the pH values and reached 1221 ± 96 mW/m2 at pH = 10.5 during ∼30 d of operation. With different pH values, the composition and relative abundance of bacterial community significantly changed in the bottom (0-50 μm), middle (50-100 μm), and top (100-150 μm) layers of the cathodic biofilm. With pH = 10.5, aerobic bacteria accounted for 12%, 13%, and 34% of the bacterial community in the top, middle, and bottom layers, respectively. The amount of anaerobic bacteria in the top and middle layers (i.e., 52%, and 50% of the bacterial community, respectively) was higher than that in the bottom layer (22%). The distribution of aerobic and anaerobic bacteria showed a "valley-peak" structure within the layers. The high CO32- concentration facilitates the hydroxyl transfer and the neutralization in the anode of the MFC under high alkali conditions. The results from this study should be useful to develop new catalyst and cathode in the MFC.
This study evaluated the neurodevelopmental toxicity of isoniazid (INH) in zebrafish embryos and the underlying mechanism.
Zebrafish embryos were exposed to different concentrations (2mM, 4mM, 8mM, 16mM, 32mM) INH for 120 hpf. During the exposure period, the percentage of embryo/larva mortality, hatching, and morphological malformation were checked every 24h until 120 hpf. The development of blood vessels in the brain was observed at 72 hpf and 120 hpf, and behavioral capacity and acridine orange (AO) staining were measured at 120 hpf. Alterations in the mRNA expression of apoptosis and dopamine signaling pathway related genes were assessed by real-time quantitative PCR (qPCR).
INH considerably inhibited zebrafish embryo hatching and caused zebrafish larval malformation (such as brain malformation, delayed yolk sac absorption, spinal curvature, pericardial edema, and swim bladder defects). 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one High concentration of INH (16mM, 32mM) even induced death of zebrafish. In addition, INH exposure markedly restrainaminergic gene expression, altered vasculature, and reduced behaviors.Online monitoring of gas pollutants in the gas phase at room temperature using an electrochemical macro gas flow sensor is challenging and important for the pollutant treatment process. In this work, for the first time, we tried to explore the homogeneous and heterogeneous application of Ni(II) (CN)42- in the KOH environment for the removal and monitoring of toxic nitric oxide gas. The homogeneous electrogenerated Ni(I) (CN)43- was effectively removing the toxic nitric oxide gas by electro scrubbing method and the novel Ni(II) (CN)42- and KOH modified electrode used for heterogeneous sensor application with high sensitivity, and reliability toward Nitric oxide gas. The sensor showed enhanced gas diffusion and high sensitivity. Scanning electron microscopy and X-ray diffraction confirmed the modification of the carbon felt electrode. In a high concentrated KOH environment, the active mediator stabilized the sensor for a long time compared to the neutral environment. The Ni(II) (CN)42- fabricated carbon felt was used to monitor the concentration of nitric oxide gas pollutant; the calculated sensitivity was approximately -0.33 mA ppm-1 cm-2. The current increased linearly with increasing nitric oxide concentration up to 12 ppm and was validated by online gas chromatography. The developed electrochemical gas flow sensor successfully monitored the unremoved nitric oxide gas at the exit from the MER electro-scrubbing process; the concentration was calculated using a calibration plot.
Homepage: https://www.selleckchem.com/products/3po.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team