Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
This work reports a new CaO-MgO-SiO2 (CMS) bioactive glass-ceramic, using ZrO2 as a nucleus to modulate the ratios of glass and ceramic phases as a function of sintering temperature. Mg-rich bioactive CMS glass-ceramics exhibit advantages regarding mechanical strength (flexural strength ~190 MPa and compressive strength ~555 MPa), in-vitro and in-vivo biocompatibilities, and bone ingrowth. The high mechanical strengths could be attributed to the CaMgSi2O6 glass-ceramic and lower porosity. X-ray absorption spectra indicate an increased SiO covalent bond via the development of CaMgSi2O6 glass-ceramics. From the in-vitro cytotoxicity and BMSC differentiation assays, the CMS samples sintered above 800 °C exhibited better cell attachment and differentiation, possibly due to structural stability, appropriate pore, and ion release to boost osteogenesis. Compared to hydroxyapatite (HA) ceramics, the CMS glass-ceramics display higher mechanical strengths, biocompatibility, and osteoconductivity. An in-vivo experiment demonstrated a fine bone-ingrowth profile around the CMS implant. This study may further the application of CMS glass-ceramics in bone implants.Solid dispersion with Pluronic F127 was proposed as alternative approach to modify the pharmacologically relevant properties of methotrexate (MTX). Solid dispersion of MTX with Pluronic F127 was prepared by fusion method and characterized by powder X-ray diffraction, thermal analysis, scanning electron microscopy and FTIR spectroscopy with the aim to elucidate the physical state of the dispersed MTX and the nature of the interactions occurring between MTX and the carrier. Effect of Pluronic F127 on solubility, dissolution rate, membrane permeability, and pharmacokinetic parameters was revealed in vitro and in vivo. It was found that physical interactions of MTX with Pluronic F127 are predominant in the solid dispersion. The effect of Pluronic F127 on the MTX solubility and release rate of MTX from the solid dispersion is pH dependent. Apparent solubility of MTX released from the solid dispersion is increased in the acidic medium and remains unchanged in the alkaline medium. In comparison with the pristine MTX, the release of MTX from the solid dispersion is faster in the acidic medium and slower in the alkaline medium. Influence of Pluronic F127 on the membrane permeability of MTX is insignificant. Bioavailability of orally administrated solid dispersion in increased. Results from in vitro and in vivo studies suggested that the pharmacokinetic properties of MTX can be improved by solid dispersion with Pluronic F127.The recently proposed concept of quaternary bioreceptivity applies to substrates treated with coating materials and it is considered in the present study with the alga Bracteacoccus minor and the cyanobacterium Nostoc sp. onto granite specimens treated with ethyl silicate and nano-sized silica doped with different amounts of TiO2 (0, 0.5, 1 and 3 wt%). The findings showed a lack of correlation between the amount of TiO2 and the level of colonization (main bioreceptivity estimator) to the presence of cracks on the surface, which annul the biocidal power of TiO2. Crack formation, which depends on the mechanical properties, greatly influences the bioreceptivity of the material. Thus, the cracks provided anchor points where water is retained, in turn strongly influencing the early stages of colonization kinetics, to a greater extent than the biocidal power of TiO2, which will probably increase as the biofilm develops over the entire surface. In addition, although the cracks were more abundant and wider in the ethyl silicate-based consolidant, the nano-sized silica provided better anchoring points, making the material treated with the corresponding consolidant more bioreceptive.Annually increasing incidence of cardiac-related disorders and cardiac tissue's minimal regenerative capacity have motivated the researchers to explore effective therapeutic strategies. In the recent years, bioprinting technologies have witnessed a great wave of enthusiasm and have undergone steady advancements over a short period, opening the possibilities for recreating engineered functional cardiac tissue models for regenerative and diagnostic applications. With this perspective, the current review delineates recent developments in the sphere of engineered cardiac tissue fabrication, using traditional and advanced bioprinting strategies. Opevesostat nmr The review also highlights different printing ink formulations, available cellular opportunities, and aspects of personalized medicines in the context of cardiac tissue engineering and bioprinting. On a concluding note, current challenges and prospects for further advancements are also discussed.A porous scaffold/implant is considered a potential method to repair bone defects, but its mechanical stability and biomechanics during the repair process are not yet clear. A mandibular titanium implant was proposed and designed with layered porous structures similar to that of the bone tissue, both in structure and mechanical properties. Topology was used to optimize the design of the porous implant and fixed structure. The finite element analysis was combined with bone "Mechanostat" theory to evaluate the stress and osteogenic property of the layered porous implant with 3 different fixation layouts (Model I with 4 screws, Model II with 5 screws and Model III with 6 screws) for mandibular reconstruction. The results showed that Model III could effectively reduce the stress shielding effect, stress within the optimized implant, defective mandible, and screws were respectively dropped 48.18%, 44.23%, and 57.27% compared to Model I, and the porous implant had a significant stress transmission effect and maintained the same stress distribution as the intact mandible after the mandibular defect was repaired. The porous implant also showed a significant mechanical stimulation effect on the growth and healing of the bone tissue according to the bone "Mechanostat" theory. The combination of porous structure with the topology technique is a promising option to improve the mechanical stability and osteogenesis of the implant, and could provide a new solution for mandibular reconstruction.
Read More: https://www.selleckchem.com/products/odm208.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team