NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Recent progression in Bi5O7I-based nanocomposites for prime performance photocatalysts.
We demonstrate our technique with examples and a usage scenario using real-world call-center data to visualize thousands of call center agents, revealing insight into their behavior and reporting feedback from expert call-center analysts.This paper presents a new approach to recognizing vanishing-point-constrained building planes from a single image of street view. We first design a novel convolutional neural network (CNN) architecture that generates geometric segmentation of per-pixel orientations from a single street-view image. The network combines two-stream features of general visual cues and surface normals in gated convolution layers, and employs a deeply supervised loss that encapsulates multi-scale convolutional features. Our experiments on a new benchmark with fine-grained plane segmentations of real-world street views show that our network outperforms state-of-the-arts methods of both semantic and geometric segmentation. The pixel-wise segmentation exhibits coarse boundaries and discontinuities. We then propose to rectify the pixel-wise segmentation into perspectively-projected quads based on spatial proximity between the segmentation masks and exterior line segments detected through an image processing. We demonstrate how the results can be utilized to perspectively overlay images and icons on building planes in input photos, and provide visual cues for various applications.The fundamental problem of Zero-Shot Learning (ZSL) is that the one-hot label space is discrete, which leads to a complete loss of the relationships between seen and unseen classes. Conventional approaches rely on using semantic auxiliary information, e.g. attributes, to re-encode each class so as to preserve the inter-class associations. However, existing learning algorithms only focus on unifying visual and semantic spaces without jointly considering the label space. More importantly, because the final classification is conducted in the label space through a compatibility function, the gap between attribute and label spaces leads to significant performance degradation. Therefore, this paper proposes a novel pathway that uses the label space to jointly reconcile visual and semantic spaces directly, which is named Attributing Label Space (ALS). In the training phase, one-hot labels of seen classes are directly used as prototypes in a common space, where both images and attributes are mapped. Since mappings can be optimized independently, the computational complexity is extremely low. In addition, the correlation between semantic attributes has less influence on visual embedding training because features are mapped into labels instead of attributes. In the testing phase, the discrete condition of label space is removed, and priori one-hot labels are used to denote seen classes and further compose labels of unseen classes. Therefore, the label space is very discriminative for the Generalized ZSL (GZSL), which is more reasonable and challenging for real-world applications. Extensive experiments on five benchmarks manifest improved performance over all of compared state-of-the-art methods.Optical microscopy is an essential tool in biology and medicine. Imaging thin, yet non-flat objects in a single shot (without relying on more sophisticated sectioning setups) remains challenging as the shallow depth of field that comes with highresolution microscopes leads to unsharp image regions and makes depth localization and quantitative image interpretation difficult. Here, we present a method that improves the resolution of light microscopy images of such objects by locally estimating image distortion while jointly estimating object distance to the focal plane. Specifically, we estimate the parameters of a spatiallyvariant Point Spread Function (PSF) model using a Convolutional Neural Network (CNN), which does not require instrument- or object-specific calibration. Our method recovers PSF parameters from the image itself with up to a squared Pearson correlation coefficient of 0.99 in ideal conditions, while remaining robust to object rotation, illumination variations, or photon noise. When the recovered PSFs are used with a spatially-variant and regularized Richardson-Lucy (RL) deconvolution algorithm, we observed up to 2.1 dB better Signal-to-Noise Ratio (SNR) compared to other Blind Deconvolution (BD) techniques. Following microscope-specific calibration, we further demonstrate that the recovered PSF model parameters permit estimating surface depth with a precision of 2 micrometers and over an extended range when using engineered PSFs. Our method opens up multiple possibilities for enhancing images of non-flat objects with minimal need for a priori knowledge about the optical setup.This paper proposes a new method for simultaneous 3D reconstruction and semantic segmentation for indoor scenes. Unlike existing methods that require recording a video using a color camera and/or a depth camera, our method only needs a small number of (e.g., 3~5) color images from uncalibrated sparse views, which significantly simplifies data acquisition and broadens applicable scenarios. To achieve promising 3D reconstruction from sparse views with limited overlap, our method first recovers the depth map and semantic information for each view, and then fuses the depth maps into a 3D scene. To this end, we design an iterative deep architecture, named IterNet, to estimate the depth map and semantic segmentation alternately. To obtain accurate alignment between views with limited overlap, we further propose a joint global and local registration method to reconstruct a 3D scene with semantic information. We also make available a new indoor synthetic dataset, containing photorealistic high-resolution RGB images, accurate depth maps and pixel-level semantic labels for thousands of complex layouts. Experimental results on public datasets and our dataset demonstrate that our method achieves more accurate depth estimation, smaller semantic segmentation errors, and better 3D reconstruction results over state-of-the-art methods.Blob detection and image denoising are fundamental, sometimes related tasks in computer vision. In this paper, we present a computational method to quantitatively measure blob characteristics using normalized unilateral second-order Gaussian kernels. This method suppresses non-blob structures while yielding a quantitative measurement of the position, prominence and scale of blobs, which can facilitate the tasks of blob reconstruction and blob reduction. Epinephrine bitartrate ic50 Subsequently, we propose a denoising scheme to address high-ISO long-exposure noise, which sometimes spatially shows a blob appearance, employing a blob reduction procedure as a cheap preprocessing for conventional denoising methods. We apply the proposed denoising methods to real-world noisy images as well as standard images that are corrupted by real noise. The experimental results demonstrate the superiority of the proposed methods over state-of-the-art denoising methods.
Here's my website: https://www.selleckchem.com/products/Epinephrine-bitartrate-Adrenalinium.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.