Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The Shedao pit-viper (Gloydius shedaoensis) exhibits an extreme sedentary lifestyle. The island species exclusively feeds on migratory birds during migratory seasons and experiences prolonged hibernation and aestivation period each year (up to eight months). The sedentary strategy reduces energy expenditure, but may trigger a series of adverse effects and the snakes have likely evolved genetic modifications to alleviate these effects. To investigate the genetic adaptations, we sequenced and compared the transcriptomes of the Shedao pit-viper and its closest mainland relative, the black eyebrow pit-viper (G. intermedius). The Shedao pit-viper revealed a low rate of molecular evolution compared to its mainland relative, which is possibly associated with metabolic suppression. Signals of positive selection were detected in two genes related to antithrombin (SERPINC1) and muscle atrophy (AARS). Those genes exert significant functions in thrombosis, inhibiting oxidation and prolonged fasting. Convergent and parallel substitutions of amino acid with two other sedentary vertebrates, which often suggest adaptation, were found in a fatty acid beta-oxidation related gene (ACATA1) and a circadian link gene (KLF10), which regulate lipogenesis, gluconeogenesis, and glycolysis. Furthermore, a circadian clock gene (CRY2) exhibited two amino acid substitutions specific to the Shedao pit-viper and one variant was predicted to affect protein function. Modifications of these genes and their related functions may have contributed to the survival of this island snake species with a sedentary lifestyle and extreme seasonal food availability. Our study demonstrated several important clues for future research on physiological and other phenotypic adaptation. Copyright © The Author(s) 2020. Published by the Genetics Society of America.Euryarchaeal lineages have been believed to have a methanogenic last common ancestor. However, members of euryarchaeal Archaeoglobi have long been considered nonmethanogenic and their evolutionary history remains elusive. Here, three high-quality metagenomic-assembled genomes (MAGs) retrieved from high-temperature oil reservoir and hot springs, together with three newly assembled Archaeoglobi MAGs from previously reported hot spring metagenomes, are demonstrated to represent a novel genus of Archaeoglobaceae, "Candidatus Methanomixophus." All "Ca Methanomixophus" MAGs encode an M methyltransferase (MTR) complex and a traditional type of methyl-coenzyme M reductase (MCR) complex, which is different from the divergent MCR complexes found in "Ca Polytropus marinifundus." In addition, "Ca Methanomixophus dualitatem" MAGs preserve the genomic capacity for dissimilatory sulfate reduction. Comparative phylogenetic analysis supports a laterally transferred origin for an MCR complex and vertical heritage of the MTR complex in this lineage. Metatranscriptomic analysis revealed concomitant in situ activity of hydrogen-dependent methylotrophic methanogenesis and heterotrophic fermentation within populations of "Ca Methanomixophus hydrogenotrophicum" in a high-temperature oil reservoir.IMPORTANCE Current understanding of the diversity, biology, and ecology of Archaea is very limited, especially considering how few of the known phyla have been cultured or genomically explored. The reconstruction of "Ca Methanomixophus" MAGs not only expands the known range of metabolic versatility of the members of Archaeoglobi but also suggests that the phylogenetic distribution of MCR and MTR complexes is even wider than previously anticipated. Copyright © 2020 Liu et al.Microbiome-based disease classification depends on well-validated disease-specific models or a priori organismal markers. These are lacking for many diseases. Here, we present an alternative, search-based strategy for disease detection and classification, which detects diseased samples via their outlier novelty versus a database of samples from healthy subjects and then compares these to databases of samples from patients. Our strategy's precision, sensitivity, and speed outperform model-based approaches. In addition, it is more robust to platform heterogeneity and to contamination in 16S rRNA gene amplicon data sets. selleck kinase inhibitor This search-based strategy shows promise as an important first step in microbiome big-data-based diagnosis.IMPORTANCE Here, we present a search-based strategy for disease detection and classification, which detects diseased samples via their outlier novelty versus a database of samples from healthy subjects and then compares them to databases of samples from patients. This approach enables the identification of microbiome states associated with disease even in the presence of different cohorts, multiple sequencing platforms, or significant contamination. Copyright © 2020 Su et al.The ecological drivers that concurrently act upon both a virus and its host and that drive community assembly are poorly understood despite known interactions between viral populations and their microbial hosts. Hydraulically fractured shale environments provide access to a closed ecosystem in the deep subsurface where constrained microbial and viral community assembly processes can be examined. Here, we used metagenomic analyses of time-resolved-produced fluid samples from two wells in the Appalachian Basin to track viral and host dynamics and to investigate community assembly processes. Hypersaline conditions within these ecosystems should drive microbial community structure to a similar configuration through time in response to common osmotic stress. However, viral predation appears to counterbalance this potentially strong homogeneous selection and pushes the microbial community toward undominated assembly. In comparison, while the viral community was also influenced by substantial undominated processes, investigated the ecological assembly processes influencing both viral and microbial community structure within hydraulically fractured shale environments. Among other results, significant relationships between the structuring processes affecting both the viral and microbial community were observed, indicating that ecological assembly might be coordinated between these communities despite differing selective pressures. Within this deep subsurface ecosystem, these results reveal a potentially important balance of ecological dynamics that must be maintained to enable long-term microbial community persistence. More broadly, this relationship begins to provide insight into the development of communities across trophic levels. Copyright © 2020 Danczak et al.
Homepage: https://www.selleckchem.com/products/Sodium-orthovanadate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team