Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Fetal magnetocardiography (fMCG) is a non-invasive biomagnetic technique that provides detailed beat-to-beat fetal heart rate analysis, both in normal rhythm as well as in fetal arrhythmias. New cryogenic-free sensors called optically pumped magnetometers (OPMs) have emerged as a less expensive and more geometrically flexible alternative to traditional Superconducting Quantum Interference Device (SQUID) technology for performing fMCG. The objective of the study was to show the ability of OPMs to record fMCG using flexible geometry while seeking to preserve signal quality, and to quantify fetal heart rate variability (FHRV).
Biomagnetic measurements were performed with OPMs in 24 healthy pregnant women with uncomplicated singleton pregnancies between 28 and 38 weeks gestation (GA). A total of 96 recordings were analyzed from OPM data that was collected using sensors placed in two different maternal configurations over the abdomen. The fMCG signals were extracted and the quality of the recordings were quantability to record and quantify fMCG in different maternal positions as opposed to rigid SQUID configurations.Magnetic Particle Imaging (MPI) is a novel technology, which opens new possibilities for promising biomedical applications. MPI uses magnetic fields to generate a specific response from magnetic nanoparticles (MNPs), to determine their spatial location non-invasively and without using ionizing radiation. One open challenge of MPI is to achieve further improvements in terms of sensitivity to translate the currently preclinical performed research into clinical applications. In this work, we study the noise and background signals of our preclinical MPI system, to identify and characterize disturbing signal contributions. The current limit of detection achieved with our device was determined previously to be 20 ng of iron. Based on the results presented in this work, we describe possible hardware and software improvements and estimate that the limit of detection could be lowered to about 200-400 pg. Additionally, a long-term analysis of the scanner performance over the last three years is presented, which proved to be an easy and effective way to monitor possible changes or damage of hardware components. All the presented results were obtained by analysing empty scanner measurements and the presented methodology can easily be adapted for different scanner types, to compare their performances.Charge injection and retention in thin dielectric layers remain critical issues due to the great number of failure mechanisms they inflict. Achieving a better understanding and control of charge injection, trapping and transport phenomena in thin dielectric films is of high priority aiming at increasing lifetime and improving reliability of dielectric parts in electronic and electrical devices. Thermal silica is an excellent dielectric but for many of the current technological developments more flexible processes are required for synthesizing high quality dielectric materials such as amorphous silicon oxynitride layers using plasma methods. In this article, the studied dielectric layers are plasma deposited SiO x N y . Independently on the layer thickness, they are structurally identical optically transparent, having the same refractive index, equal to the one of thermal silica. Influence of the dielectric film thickness on charging phenomena in such layers is investigated at nanoscale using Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy. The main effect of the dielectric film thickness variation concerns the charge flow in the layer during the charge injection step. Selleck YD23 According to the SiO x N y layer thickness two distinct trends of the measured surface potential and current are found, thus defining ultrathin (up to 15 nm thickness) and thin (15-150 nm thickness) layers. Nevertheless, analyses of KPFM surface potential measurements associated with results from finite element modeling of the structures show that the dielectric layer thickness has weak influence on the amount of injected charge and on the decay dynamics, meaning that pretty homogeneous layers can be processed. The charge penetration depth in such dielectric layers is evaluated to 10 nm regardless the dielectric thickness.The layered mineral tilkerodeite (Pd2HgSe3), the palladium analogue of jacutingaite (Pt2HgSe3), is a promising quantum spin hall insulator for low-power nanospintronics. In this context, a fast and reliable assessment of its structure is key for exploring fundamental properties and architecture of new Pd2HgSe3-based devices. Here, we investigate the first-order Raman spectrum in high-quality, single-crystal bulk tilkerodeite, and analyze the wavenumber relation to its isostructural jacutingaite analogue. By using polarized Raman spectroscopy, symmetry analysis, and first-principles calculations, we assigned all the Raman-active phonons in tilkerodeite, unveiling their wavenumbers, atomic displacement patterns, and symmetries. Our calculations used several exchange-correlation functionals within the density functional perturbation theory framework, reproducing both structure and Raman-active phonon wavenumbers in excellent agreement with experiments. Also, it was found that the influence of the spin-orbit coupling can be neglected in the study of these properties. Finally, we compared the wavenumber and atomic displacement patterns of corresponding Raman-active modes in tilkerodeite and jacutingaite, and found that the effect of the Pd and Pt masses can be neglected on reasoning their wavenumber differences. From this analysis, tilkerodeite is found to be mechanically weaker than jacutingaite against the atomic displacement patterns of these modes. Our findings advance the understanding of the structural properties of a recently discovered layered topological insulator, fundamental to further exploring its electronic, optical, thermal, and mechanical properties, and for device fabrication.First-principles phonon calculations have been widely performed for studying vibrational properties of condensed matter, where the dynamical matrix is commonly constructed via supercell force-constant calculations or the linear response approach. With different manners, a supercell can be introduced in both methods. Unless the supercell is large enough, the interpolated phonon property highly depends on the shape and size of the supercell and the imposed periodicity could give unphysical results that can be easily overlooked. Along this line, the concept of partition of force constants is discussed, and addressed by NaCl, PbTiO$_3$, monolayer CrI$_3$, and twisted bilayer graphene as examples for illustrating the effects of the imposed supercell periodicity. To diminish the unphysical effects, a simple method of partitioning force constants, which relies only on the translational symmetry and interatomic distances, is demonstrated to be able to deliver reasonable results. The partition method is also compatible with the mixed-space approach for describing LO-TO splitting.
Here's my website: https://www.selleckchem.com/products/yd23.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team