Notes
Notes - notes.io |
Neither a stimulated Brillouin scattering effect nor a thermal-induced mode instability effect has been observed at ultimate power level, and the beam quality factor M2 is measured to be less than 1.2. To the best of our knowledge, this is the highest average power for a narrow linewidth single-channel fiber laser system reported so far operating at 1030 nm.We demonstrate suppression of dephasing tied to deformation potential coupling of confined electrons to longitudinal acoustic (LA) phonons in optical control experiments on large semiconductor quantum dots (QDs) with emission compatible with the low-dispersion telecommunications band at 1.3 µm. By exploiting the sensitivity of the electron-phonon spectral density to the size and shape of the QD, we demonstrate a fourfold reduction in the threshold pulse area required to enter the decoupled regime for exciton inversion using adiabatic rapid passage (ARP). Our calculations of the quantum state dynamics indicate that the symmetry of the QD wave function provides an additional means to engineer the electron-phonon interaction. Our findings will support the development of solid-state quantum emitters in future distributed quantum networks using semiconductor QDs.Microwave communications have witnessed an incipient proliferation of multi-antenna and opportunistic technologies in the wake of an ever-growing demand for spectrum resources, while facing increasingly difficult network management over widespread channel interference and heterogeneous wireless broadcasting. Radio frequency (RF) blind source separation (BSS) is a powerful technique for demixing mixtures of unknown signals with minimal assumptions, but relies on frequency dependent RF electronics and prior knowledge of the target frequency band. We propose photonic BSS with unparalleled frequency agility supported by the tremendous bandwidths of photonic channels and devices. Specifically, our approach adopts an RF photonic front-end to process RF signals at various frequency bands within the same array of integrated microring resonators, and implements a novel two-step photonic BSS pipeline to reconstruct source identities from the reduced dimensional statistics of front-end output. We verify the feasibility and robustness of our approach by performing the first proof-of-concept photonic BSS experiments on mixed-over-the-air RF signals across multiple frequency bands. The proposed technique lays the groundwork for further research in interference cancellation, radio communications, and photonic information processing.We report the first green-pumped continuous-wave (cw) optical parametric oscillator (OPO) based on MgOPPLN in a fanout grating design. Pumped by a single-frequency cw laser at 532 nm, the OPO provides tunable radiation across 813-1032 nm in the signal and 1098-1539 nm in the idler by simple mechanical translation at a fixed temperature of 55°C. By deploying a 25-mm-long crystal to minimize thermal effects and using output coupling for the signal wave, we generate a total output power of up to 714 mW at 30% extraction efficiency in excellent Gaussian beam quality with M2 less then 1.1 and high output stability. Simultaneous measurements of signal and idler power result in passive stability of 2.8% and 1.8% rms, respectively, over 1 h. Strong thermal effects contribute to the high stability and excellent beam quality, while linear and green-induced infrared absorption limit the power scaling capabilities of the OPO. Selleck Omilancor The output signal is single-mode with an instantaneous linewidth of ∼3MHz and frequency stability of ∼84MHz over 72 s.The design of a reconfigurable terahertz (THz) switch by using flexible L-shaped metamaterial (FLM), which is composed of dual-layer L-shaped metamaterials on polydimethylsiloxane substrate, which has three resonances at 0.57, 1.05, and 1.52 THz, is presented. By stretching the FLM along the x-axis direction, the transmission intensity is increased gradually at the transverse electric mode (TE) and reduced at the transverse magnetic (TM) mode, respectively. Reversely, by stretching the FLM along the y-axis direction, the transmission intensity is reduced gradually at the TE mode and increased at the TM mode, respectively. These electromagnetic responses of FLM provide the optical-logic behaviors with programmable characteristics by stretching FLM at different polarized light. It indicates that the proposed FLM could be used for the dual/triple-band switching, polarization switching, and programmable switching applications.Three-dimensional (3D) imaging of living organisms requires fine optical sectioning and high-speed image acquisition, which can be achieved by light sheet fluorescence microscopy (LSFM). However, orthogonal illumination and detection arms in the LSFM system make it bulky. Here, we propose and demonstrate the application of a volume holographic optical element (photopolymer-based volume holographic grating) for designing a compact LSFM system, called a volume holographic LSFM (VHLSFM). Using the VHLSFM, we performed in vivo imaging of Caenorhabditis elegans (C. elegans) and observed high-contrast optically sectioned fluorescence images of the oocytes and embryonic development in real time for 3D imaging.In this Letter, a high-accuracy, two-dimensional displacement sensor is proposed, designed, and demonstrated based on the concept of an extrinsic Fabry-Perot Interferometer. The sensor is composed of two bundled single-mode optic fibers in parallel and two plasmonic metasurface resonators inscribed on a gold substrate via a focused ion beam. The fiber end surface and the metasurface are in parallel with a small cavity between. The cavity change or Z-component displacement is determined from the pattern of interference fringes. The X-component displacement, perpendicular to the Z component, is identified from wavelength-selective metasurface resonators, which possess unique resonant wavelengths due to different nanostructure designs. The sensor was calibrated with six displacements applied through a three-axis precision linear stage. Test results indicated that the proposed interferometer can measure displacements with a maximum error of 5.4 µm or 2.2%.
Read More: https://www.selleckchem.com/products/bt-11.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team