Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The total amount of soluble sugars was reduced by 40% compared to control, and starch accumulation was mainly observed in fronds exposed to BPA. Even if the response patterns of Lemna minor based on fresh and dry weight measurements were less sensitive in our experiment conditions, further studies should be addressed since BPA represents a threat to the dynamic equilibrium governing aquatic ecosystems.Noise-induced hearing loss (NIHL) remains a leading occupational related disease and is a serious public health problem. Hence, the identification of potential biomarkers for NIHL prevention and diagnosis has become an urgent work. To discover potential metabolic biomarkers of NIHL, plasma metabolomics analysis in 62 NIHL patients and 62 normal hearing controls was performed using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF MS). Orthogonal partial least square-discriminant analysis (OPLS-DA) model was applied to distinguish metabolite profile alterations in plasma samples between the two groups. The metabolites with a variable importance of projection (VIP) value > 1 and P value 1 and P less then 0.05 were significantly altered between the two groups. Totally, seven metabolic pathways involving the glycerophospholipid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, autophagy pathway, choline metabolism, the alpha-linolenic acid metabolism and linoleic acid metabolism, and retrograde endocannabinoid pathway were significantly related to NIHL. Furthermore, verification by RT-qPCR suggested that the mRNA expression levels of PI3K and AKT along with ATG5 were significantly lower in the NIHL patients compared with controls. In summary, the present study provides the first evidence that the identified aberrantly altered metabolites may be the potentially valuable biomarkers of NIHL for occupational noise-exposed workers. Autophagy signal pathway may be involved in the occurrence and development of NIHL. Moreover, this present study may be helpful to further better understand the metabolic changes in NIHL and be helpful for the understanding of pathogenic mechanism.This study was conducted to identify the bioactive phytochemicals in Salvia officinalis essential oil, to determine the polyphenols in the aqueous extract (SOE), and to evaluate their protective role against cadmium (Cd)-induced oxidative damage and genotoxicity in rats. Six groups of female rats were treated orally for 2 weeks including the control group, CdCl2-treated group, SOE-treated groups at low or high dose (100 and 200 mg/kg b.w), and CdCl2 plus SOE-treated groups at the two doses. The GC-MS analysis identified 39 compounds; the main compounds were 9-octadecenamide, eucalyptol, palmitic acid, and oleic acid. However, the HPLC analysis showed 12 polyphenolic compounds and the majority were coumaric acid, chlorogenic acid, coffeic acid, catechin, vanillin, gallic acid, ellagic acid, and rutin. In the biological study, rats received CdCl2 displayed severe disturbances in liver and kidney indices alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (Alb), total protein (TP), total bilirubin (T. Bil), direct bilirubin (D. Bil), creatinine, uric acid, and urea, lipid profile, tumor necrosis factor-alpha (TNF-α), alpha-fetoprotein (AFP) and CEA), glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), malondialdehyde (MDA), nitric oxide (NO), gene expressions, DNA fragmentation, and histological alterations in the liver and kidney tissue. SOE showed a potent antioxidant and mitigated these alterations in serum and tissue. Moreover, the high dose succeeded to normalize most of the tested parameters and histological features. It could be concluded that S. officinalis is a promising source for bioactive compounds with therapeutic benefits against environmental toxicants.Conservation management usually carried out for a period of time to maintain the vegetation restoration of coal waste dumps after reclamation. However, the natural restoration of vegetation is faced with great challenges in semi-arid mining areas without management, due to the fragile ecological environment. see more Therefore, it is necessary to determine a reasonable management plan so that vegetation restoration can reach a stable state although the abandonment of the management. The objective was to explore the difference of vegetation restoration under different management modes in a typical semi-arid mining area. Two reclaimed coal waste dumps under different management measures, the north waste dump (ND) and the south waste dump (SD), were examined in the ShengLi coalfield in Inner Mongolia, China. The normalized difference vegetation index (NDVI) dataset based on Landsat series imagery was obtained using the Google Earth Engine (GEE) platform, and the landscape metrics were also calculated based on different vegetation coverage. The results proved that 3 years of management was not enough to stabilize vegetation restoration. A serious vegetation degradation occurred at the ND after the management stopped, with 40.1% of the pixels recorded a significant decrease (ρ = 0.05). The vegetation coverage became fragmented, and there was a tendency of succession to lower coverage. On the contrary, the vegetation restoration of SD was better under continuous management, and no significant degradation trend was observed. Furthermore, the results indicated that rainfall is the main influencing factor on vegetation restoration in semi-arid mining areas. The coal waste dump was more susceptible to weather change in natural restoration. By contrast, continuous management measures will resist such climate disturbances, even in dry years. This research will provide support for the formulation of the reclamation management plan of coal waste dumps in semi-arid mining areas.In this research work, the biosorption potential of brown algae, Sargassum polycystum, was investigated for the removal of toxic metals, cadmium (Cd) and zinc (Zn), under controlled environmental conditions. The biosorbent prepared from the S. polycystum was characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The optimal conditions identified using Box-Behnken design (BBD) for Cd removal were pH 4.65, biosorbent mass 1.8 g/L and shaking speed 76 rpm. For zinc, the optimum values were pH 5.7, biosorbent mass 1.2 g/L and shaking speed 125 rpm, respectively. The equilibrium uptake of the metals, Cd and Zn, was evaluated by isotherm models. The Langmuir isotherm proved to be an excellent fit confirming single layer of sorption. The maximum Cd and Zn uptakes achieved were 105.26 mg/g and 116.2 mg/g respectively. The kinetics of Cd and Zn biosorption onto brown algae Sargassum polycystum, follows pseudo-second order. The thermodynamic parameters were determined, and the sorption process was found to be feasible.
My Website: https://www.selleckchem.com/products/e7766-diammonium-salt.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team