NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Catalyst-free account activation involving permanganate under seen lighting irradiation regarding sulfamethazine destruction: Findings as well as theoretical formula.
The CNN-CAD achieved the best performance in our experiments with a 92.48% classification accuracy rate. The CNN-CAD results showed a better performance in all criteria than those of endoscopic experts. The model visualization results showed reasonable regions of interest to explain pathology classification decisions. We demonstrated that CNN-CAD can distinguish the pathology of colorectal adenoma, yielding better outcomes than the endoscopic experts group.The purpose of this study was to establish a methodology and technology for the development of an MRI-based radiomic signature for prognosis of overall survival (OS) in nasopharyngeal cancer from non-endemic areas. The signature was trained using 1072 features extracted from the main tumor in T1-weighted and T2-weighted images of 142 patients. A model with 2 radiomic features was obtained (RAD model). Tumor volume and a signature obtained by training the model on permuted survival data (RADperm model) were used as a reference. A 10-fold cross-validation was used to validate the signature. Harrel's C-index was used as performance metric. A statistical comparison of the RAD, RADperm and volume was performed using Wilcoxon signed rank tests. The C-index for the RAD model was higher compared to the one of the RADperm model (0.69±0.08 vs 0.47±0.05), which ensures absence of overfitting. Also, the signature obtained with the RAD model had an improved C-index compared to tumor volume alone (0.69±0.08 vs 0.65±0.06), suggesting that the radiomic signature provides additional prognostic information.We apply feature-extraction and machine learning methods to multiple sources of contrast (acetic acid, Lugol's iodine and green light) from the white Pocket Colposcope, a low-cost point of care colposcope for cervical cancer screening. We combine features from the sources of contrast and analyze diagnostic improvements with addition of each contrast. We find that overall AUC increases with additional contrast agents compared to using only one source.Breast cancer is a global health concern, with approximately 30 million new cases projected to be reported by 2030. Protosappanin B in vivo While efforts are being channeled into curative measures, preventive and diagnostic measures also need to be improved to curb the situation. Convolutional Neural Networks (CNNs) are a class of deep learning algorithms that have been widely adopted for the computerized classification of breast cancer histopathology images. In this work, we propose a set of training techniques to improve the performance of CNN-based classifiers for breast cancer identification. We combined transfer learning techniques with data augmentation and whole image training to improve the performance of the CNN classifier. Instead of conventional image patch extraction for training and testing, we employed a high-resolution whole-image training and testing on a modified network that was pre-trained on the Imagenet dataset. Despite the computational complexity, our proposed classifier achieved significant improvement over the previously reported studies on the open-source BreakHis dataset, with an average image level accuracy of about 91% and patient scores as high as 95%.Clinical Relevance- this work improves on the performance of CNN for breast cancer histopathology image classification. An improved Breast cancer image classification can be used for the preliminary examination of tissue slides in breast cancer diagnosis.We have developed a deep learning architecture, DualViewNet, for mammogram density classification as well as a novel metric for quantifying network preference of mediolateral oblique (MLO) versus craniocaudal (CC) views in density classification. Also, we have provided thorough analysis and visualization to better understand the behavior of deep neural networks in density classification. Our proposed architecture, DualViewNet, simultaneously examines and classifies both MLO and CC views corresponding to the same breast, and shows best performance with a macro average AUC of 0.8970 and macro average 95% confidence interval of 0.8239-0.9450 obtained via bootstrapping 1000 test sets. By leveraging DualViewNet we provide a novel algorithm and quantitative comparison of MLO versus CC views for classification and find that MLO provides stronger influence in 1,187 out of 1,323 breasts.Computerized parenchymal analysis has shown potential to be utilized as an imaging biomarker to estimate the risk of breast cancer. Parenchymal analysis of digital mammograms is based on the extraction of computerized measures to build machine learning-based models for the prediction of breast cancer risk. However, the choice of the region of interest (ROI) for feature extraction within the breast remains an open problem. In this work we perform a comparison between five different methods suggested in the literature for automated ROI selection, including the whole breast (WB), the maximum squared (MS), the retro-areolar region (RA), the lattice-based (LB), and the polar-based (PB) selection methods. For the experiments, we built a retrospective dataset of 896 screening mammograms from 224 women (112 cases and 112 healthy controls). The performance of each ROI selection method was measured in terms of the area under the curve (AUC) values. The AUC values varied between 0.55 and 0.79 depending on the method and experimental settings. The best performance on an independent test set was achieved by the MS method (AUC of 0.59, 95% CI 0.55-0.64). This method is fully-automated and does not require adjusting hyper-parameters. Based on our results, we prompt the use of the MS method for ROI selection in the computerized parenchymal analysis for breast cancer risk assessment.CAD systems have shown good potential for improving breast cancer diagnosis and anomaly detection in mammograms. A basic enabling step for the utilization of CAD systems in mammographic analysis is the correct identification of the breast region. Therefore, several methods to segment the pectoral muscle in the medio-lateral oblique (MLO) mammographic view have been proposed in the literature. However, currently it is difficult to perform and objective comparison between different chest wall (CW) detection methods since they are often evaluated with different evaluation procedures, datasets and the implementations of the methods are not publicly available. For this reason, we propose a methodology to evaluate and compare the performance of CW detection methods using a publicly available dataset (INbreast). We also propose a new intensity-based method for automatic CW detection. We then utilize the proposed evaluation methodology to compare the performance of our CW detection algorithm with a state-of-the-art CW detection method.
Homepage: https://www.selleckchem.com/products/protosappanin-b.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.