Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Prostate cancer (PCa) represents the most common tumor in male and one of the most relevant causes of death in Western countries. Androgen deprivation therapy (ADT) constitutes a widely used approach in advanced PCa. When PCa progresses in spite of ADT and castrate levels of testosterone, the severe clinical condition termed as metastatic castration-resistant prostate cancer (mCRPC) takes place. The only approach to mCRPC has been represented by chemotherapy with taxanes for many years. Nevertheless, recently introduced treatments such as 2nd generation antiandrogens (i.e. enzalutamide and abiraterone), cell immunotherapy with sipuleucel-T or targeted alpha therapy with 223Ra-dichloride, have dramatically changed mCRPC prognosis. These novel therapies call for an unmet need for imaging biomarkers suitable for patients' pre-treatment stratification and response assessment. In this scenario, nuclear medicine can provide several metabolic and molecular probes for investigating pathological processes at a cellular and sub-cellular level. The aim of this paper is to review the most relevant findings of the literature published to date on this topic, giving particular emphasis to the pros and cons of each tracer and also covering future prospects for defining personalized therapeutic approaches.
Recent studies have revealed thousands of A-to-I RNA editing events in primates. selleck screening library These events are closely related to the occurrence and development of multiple cancers, but the origination and general functions of these events in ovarian cancer remain incompletely understood.
To further the determination of molecular mechanisms of ovarian cancer from the perspective of RNA editing.
Here, we used the SNP-free RNA editing Identification Toolkit (SPRINT) to detect RNA editing sites. These editing sites were then annotated and related functional analysis was performed.
In this study, about 1.7 million RES were detected in each sample, and 98% of these sites were due to A-to-G editing and were mainly distributed in non-coding regions. More than 1,000 A-to-G RES were detected in CDS regions, and nearly 700 could lead to amino acid changes. Our results also showed that editing in the 3'UTR regions can influence miRNA-target binding. We predicted the network of changed miRNA-mRNA interaction caused by the A-to-I RNA editing sites. We also screened the differential RNA editing sites between ovarian cancer and adjacent normal tissues, and then performed GO and KEGG pathway enrichment analysis on the genes that contain these differential RNA editing sites. Finally, we identified the potential dysregulated RNA editing events in ovarian cancer samples.
This study systematically identified and analyzed RNA editing events in ovarian cancer and laid a foundation to explore the regulatory mechanism of RNA editing and its function in ovarian cancer.
This study systematically identified and analyzed RNA editing events in ovarian cancer and laid a foundation to explore the regulatory mechanism of RNA editing and its function in ovarian cancer.Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are genetically modified G-protein-coupled receptors (GPCRs), which can be activated by a synthetic ligand that is otherwise inert at endogenous receptors. DREADDs can be expressed in cells in the central nervous system (CNS) and subsequently offer the opportunity for remote and reversible silencing or activation of the target cells when the synthetic ligand is systemically administered. In neuroscience, DREADDs have thus far shown to be useful tools for several areas of research. Furthermore, they offer considerable potential for use as a gene therapy strategy for neurological disorders. However, in order to design a DREADD-based gene therapy, it is necessary to first evaluate the viral vector delivery methods utilised to deliver these chemogenetic tools in the literature. This review evaluates each of the prominent strategies currently utilised for DREADD delivery, discussing their respective advantages and limitations. It focuses on Adeno-Associated Virus (AAV)- and lentivirus-based systems, and the manipulation of these through cell-type specific promoters and pseudotyping. Furthermore, we address how virally mediated DREADD delivery could be improved in order to make it a viable gene therapy strategy and thus expand its translational potential.
Successful nanoparticle delivery of gene-editing tools is dependent on the ability of nanoparticles to pass through the cellular membrane, move through the cytoplasm, and cross the nuclear envelope to enter the nucleus. It is critical that intracellular nanoparticles interact with the cytoskeletal network to move toward the nucleus and must escape degradation pathways including lysosomal digestion. Without efficient intracellular trafficking, nanoparticles loaded with gene editing tools cannot reach the nucleus for efficient transfection.
We have developed nanoparticles with a low molecular weight branched polyethylenimine lipid shell and PLGA core that can effectively deliver plasmid DNA to macrophages for gene editing while limiting toxicity.
Core-shell nanoparticles were synthesized by a modified solvent-evaporation method and were loaded with plasmid DNA. Confocal microscopy was used to visualize the internalization, intracellular distribution and cytoplasmic transportation of plasmid DNA loaded nanoparticles (pDNA-NPs) in bone marrow derived macrophages.
Core-shell nanoparticles had a high surface charge of +56 mV and a narrow size distribution. When loaded with plasmid DNA for transfection, the nanoparticles increased in size from 150 nm to 200 nm, and the zeta potential decreased to +36 mV, indicating successful loading. Further, fluorescence microscopy revealed that pDNA-NPs crossed the cell membrane and interacted with actin filaments. Intracellular tracking of pDNA-NPs showed successful separation of pDNA-NPs from lysosomes, allowing entry into the nucleus at 2 hours, with further nuclear ingress up to 5 hours. Bone marrow derived macrophages treated with pDNA/GFP-NPs exhibited high GFP expression with low cytotoxicity.
Together, this data suggests pDNA-NPs are an effective delivery system for macrophage gene-editing.
Together, this data suggests pDNA-NPs are an effective delivery system for macrophage gene-editing.
Here's my website: https://www.selleckchem.com/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team