Notes
![]() ![]() Notes - notes.io |
It has been contended that violence is prevalent in the workplace, and there has been increasing research interest into its potential effects. Human interactions at workplaces are apparent. However, the interactions among humans may have positive or negative dimensions. Usually, the positive or negative interactions between workers lead to different outcomes. Sometimes, they lead to a productive working environment; however, in some cases, they lead to toxicity among workers. In this study, we investigate the impact of workplace violence (WV) on innovative work behavior (IWB). Specifically, it examines the impact of the three dimensions of WV, namely, harassment, mobbing, and sabotage. Moreover, employees' wellbeing mediates the relationship between WV (harassment, mobbing, and sabotage) and IWB. A questionnaire survey approach was used in this study. The target population were the workers of SMEs entrepreneurs located in Guangdong Province (China). The results confirm that, in the direct relationship, WV (harassment, mobbing, and sabotage) has a negative relationship with innovative IWB. Moreover, results also confirm that employee wellbeing is mediated between WV (harassment, mobbing, and sabotage) and IWB. Therefore, the empirical results of this paper identify that workplace violence reduces employees' innovative work behavior by reducing their subjective and eudemonic wellbeing, which further broadens the perspective of IWB's motivation analysis. Practical implications for small and medium enterprise organizations have also been discussed in this paper.The rapid development of wearable wireless sensor networks (W-WSNs) has created high demand for small and flexible antennas. In this paper, we present small, flexible, low-profile, light-weight all-textile antennas for application in W-WSNs and investigate the impact of the textile materials on the antenna performance. A step-by-step procedure for design, fabrication and measurement of small wearable backed antennas for application in W-WSNs is also suggested. 4-MU Based on the procedure, an antenna on a denim substrate is designed as a benchmark. It demonstrates very small dimensions and a low-profile, all while achieving a bandwidth (|S11| less then -6 dB) of 285 MHz from 2.266 to 2.551 GHz, radiation efficiency more than 12% in free space and more than 6% on the phantom. Also, the peak 10 g average SAR is 0.15 W/kg. The performance of the prototype of the proposed antenna was also evaluated using an active test. To investigate the impact of the textile materials on the antenna performance, the antenna geometry was studied on cotton, polyamide-elastane and polyester substrates. It has been observed that the lower the loss tangent of the substrate material, the narrower the bandwidth. Moreover, the higher the loss tangent of the substrate, the lower the radiation efficiency and SAR.Controlled environment crop production recommendations often use the daily light integral (DLI) to quantify the light requirements of specific crops. Sole-source electric lighting, used in plant factories, and supplemental electric lighting, used in greenhouses, may be required to attain a specific DLI. Electric lighting is wasteful if not provided in a way that promotes efficient photochemistry. The quantum yield of photosystem II (ΦPSII), the fraction of absorbed light used for photochemistry, decreases with increasing photosynthetic photon flux density (PPFD). Thus, we hypothesized that the daily photochemical integral (DPI), the total electron transport through photosystem II (PSII) integrated over 24 h, would increase if the same DLI was provided at a lower PPFD over a longer photoperiod. To test this, ΦPSII and the electron transport rate (ETR) of lettuce (Lactuca sativa 'Green Towers') were measured in a growth chamber at DLIs of 15 and 20 mol m-2 d-1 over photoperiods ranging from 7 to 22 h. This resulted in PPFDs of 189 to 794 μmol m-2 s-1. The ΦPSII decreased from 0.67 to 0.28 and ETR increased from 55 to 99 μmol m-2 s-1 as PPFD increased from 189 to 794 μmol m-2 s-1. The DPI increased linearly as the photoperiod increased, but the magnitude of this response depended on DLI. With a 7-h photoperiod, the DPI was ≈2.7 mol m-2 d-1, regardless of DLI. However, with a 22-h photoperiod, the DPI was 4.54 mol m-2 d-1 with a DLI of 15 mol m-2 d-1 and 5.78 mol m-2 d-1 with a DLI of 20 mol m-2 d-1. Our hypothesis that DPI can be increased by providing the same DLI over longer photoperiods was confirmed.Clear cell foci (CCF) of the liver are considered to be pre-neoplastic lesions of hepatocellular adenomas and carcinomas. They are hallmarked by glycogen overload and activation of AKT (v-akt murine thymoma viral oncogene homolog)/mTOR (mammalian target of rapamycin)-signaling. Here, we report the transcriptome and proteome of CCF extracted from human liver biopsies by laser capture microdissection. We found 14 genes and 22 proteins differentially expressed in CCF and the majority of these were expressed at lower levels in CCF. Using immunohistochemistry, the reduced expressions of STBD1 (starch-binding domain-containing protein 1), USP28 (ubiquitin-specific peptidase 28), monad/WDR92 (WD repeat domain 92), CYB5B (Cytochrome b5 type B), and HSPE1 (10 kDa heat shock protein, mitochondrial) were validated in CCF in independent specimens. Knockout of Stbd1, the gene coding for Starch-binding domain-containing protein 1, in mice did not have a significant effect on liver glycogen levels, indicating that additional factors are required for glycogen overload in CCF. Usp28 knockout mice did not show changes in glycogen storage in diethylnitrosamine-induced liver carcinoma, demonstrating that CCF are distinct from this type of cancer model, despite the decreased USP28 expression. Moreover, our data indicates that decreased USP28 expression is a novel factor contributing to the pre-neoplastic character of CCF. In summary, our work identifies several novel and unexpected candidates that are differentially expressed in CCF and that have functions in glycogen metabolism and tumorigenesis.Soybean is an important oilseed crop that provides high-quality protein and vegetable oil. Salinity constitutes a negative abiotic factor that reduces soybean plant growth, production, and quality. The adsorption of Na+ by chitosan-modified biochar (CMB) has a significant effect on salinity but the application of CMB is limited in soybean. In the current study, CMB was used for characterization of physiological, biochemical, and molecular responses of soybean under salt stress. Comparison of CMB and unmodified (as-is) biochar (BR) demonstrated a significant difference between them shown by using Fourier transform infrared spectroscopy (FTIR), scan electron microscopy (SEM), Brunauer-Emmett-Teller (BET), elemental analysis and z-potential measurement. Pseudo-first and second-order better suited for the analysis of Na+ adsorption kinetics. The salt-stress reduced the soybean plants growth, root architecture characteristics, biomass yield, nutrients acquisition, chlorophyll contents, soluble protein, and sugar contents, while CMB with salt-stress significantly increased the above parameters.
My Website: https://www.selleckchem.com/products/4-Methylumbelliferone(4-MU).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team