Notes
![]() ![]() Notes - notes.io |
The results revealed a division of labor across brain regions While posterior areas preferentially coded for content (i.e., the category), frontal areas carried information about the current versus prospective relevance status of the memory, irrespective of the category. Intraparietal sulcus revealed both strong category- and status-sensitivity, consistent with its hub function of combining stimulus and priority signals. Furthermore, cross-decoding analyses revealed that while current and prospective representations were similar prior to search, they became dissimilar during search, in posterior as well as frontal areas. The findings provide further evidence for a dissociation between content and control networks in working memory.The implicit and explicit awareness of owning a body and its parts is a constant accompaniment in our everyday life and our interaction with the outside world. The way in which we build and maintain a coherent sense of body ownership is not fully understood. It has been postulated that the integration between exteroceptive, interoceptive, and proprioceptive signals may play a fundamental role in the sense of body ownership. For instance, studies on healthy subjects and brain-damaged patients have suggested that alterations in the sense of body ownership are coupled with autonomic signal changes, such as thermoregulatory reactions. However, the available evidence is conflicting, possibly due to shortcomings in the experimental paradigm that previous studies have adopted. In this study, we explore the relationship between body ownership, thermoregulation, and thermal sensitivity through a novel application of the mirror-box illusion paradigm, overcoming some of the limitations of previous studies. We find a bilateral decrease in hand skin temperature, together with reduced thermal sensitivity for warm thermal stimuli following the induction of the illusion of ownership towards the participant's reflected hand. These findings demonstrate the importance of the orchestration of exteroceptive (e.g., visual), autonomic (e.g., body temperature) and proprioceptive (e.g., position and movement of the body) signals in maintaining a coherent sense of body ownership.Inhibition of return (IOR) is an inhibitory aftereffect of visuospatial orienting, typically resulting in slower responses to targets presented in an area that has been recently attended. Since its discovery, myriad research has sought to explain the causes and effects underlying this phenomenon. Here, we briefly summarize the history of the phenomenon, and describe the early work supporting the functional significance of IOR as a foraging facilitator. We then shine a light on the discordance in the literature with respect to mechanism-in particular the lack of theoretical constructs that can consistently explain innumerable dissociations. We then describe three diagnostics (central arrow targets, locus of slack logic and the psychological refractory period, and performance in speed-accuracy space) used to support our theory that there are two forms of inhibition of return-the form which is manifest being contingent upon the activation state of the reflexive oculomotor system. The input form, which operates to decrease the salience of inputs, is generated when the reflexive oculomotor system is suppressed; the output form, which operates to bias responding, is generated when the reflexive oculomotor system is not suppressed. Then, we subject a published data set, wherein inhibitory effects had been generated while the reflexive oculomotor system was either active or suppressed, to diffusion modelling. As we hypothesized, based on the aforementioned theory, the effects of the two forms of IOR were best accounted for by different drift diffusion parameters. The paper ends with a variety of suggestions for further research.Researchers and clinicians in neuropsychology often compare individual patients against healthy control samples, to quantify evidence for cognitive-behavioural deficits and dissociations. Statistical methods for these comparisons have been developed that control Type I (false positive) errors effectively. However, remarkably little attention has been given to the power of these tests. In this practical primer, we describe, in minimally technical terms, the origins and limits of power for case-control comparisons. We argue that power calculations can play useful roles in single-case study design and interpretation, and we make suggestions for optimising power in practice. Disufenton research buy As well as providing figures, tables and tools for estimating the power of case-control comparisons, we hope to assist researchers in setting realistic expectations for what such tests can achieve in general.People normally know what they want to communicate before they start speaking. However, brain indicators of communication are typically observed only after speech act onset, and it is unclear when any anticipatory brain activity prior to speaking might first emerge, along with the communicative intentions it possibly reflects. Here, we investigated brain activity prior to the production of different speech act types, request and naming actions performed by uttering single words embedded into language games with a partner, similar to natural communication. Starting ca. 600 msec before speech onset, an event-related potential maximal at fronto-central electrodes, which resembled the Readiness Potential, was larger when preparing requests compared to naming actions. Analysis of the cortical sources of this anticipatory brain potential suggests a relatively stronger involvement of fronto-central motor regions for requests, which may reflect the speaker's expectation of the partner actions typically following requests, e.g., the handing over of a requested object. Our results indicate that different neuronal circuits underlying the processing of different speech act types activate already before speaking. Results are discussed in light of previous work addressing the neural basis of speech act understanding and predictive brain indexes of language comprehension.People can learn to ignore salient distractors that occur frequently at particular locations, making them interfere less with task performance. This effect has been attributed to learnt suppression of the likely distractor locations at a pre-selective stage of attentional-priority computation. However, rather than distractors at frequent (vs rare) locations being just less likely to capture attention, attention may possibly also be disengaged faster from such distractors - a post-selective contribution to their reduced interference. Eye-movement studies confirm that learnt suppression, evidenced by a reduced rate of oculomotor capture by distractors at frequent locations, is a major factor, whereas the evidence is mixed with regard to a role of rapid disengagement However, methodological choices in these studies limited conclusions as to the contribution of a post-capture effect. Using an adjusted design, here we positively establish the rapid-disengagement effect, while corroborating the oculomotor-capture effect.
Website: https://www.selleckchem.com/products/NXY-059.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team