Notes
![]() ![]() Notes - notes.io |
Small interfering RNA (siRNA) is a powerful tool for gene silencing that has been used for a wide range of biomedical applications, but there are many challenges facing its therapeutic use in vivo. Here, we report on a platelet cell membrane-coated metal-organic framework (MOF) nanodelivery platform for the targeted delivery of siRNA in vivo. The MOF core is capable of high loading yields, and its pH sensitivity enables endosomal disruption upon cellular uptake. The cell membrane coating provides a natural means of biointerfacing with disease substrates. It is shown that high silencing efficiency can be achieved in vitro against multiple target genes. Using a murine xenograft model, significant antitumor targeting and therapeutic efficacy are observed. Overall, the biomimetic nanodelivery system presented here provides an effective means of achieving gene silencing in vivo and could be used to expand the applicability of siRNA across a range of disease-relevant applications. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).We study topologically protected four-wave mixing (FWM) interactions in a plasmonic metasurface consisting of a periodic array of nanoholes in a graphene sheet, which exhibits a wide topological bandgap at terahertz frequencies upon the breaking of time reversal symmetry by a static magnetic field. We demonstrate that due to the significant nonlinearity enhancement and large life time of graphene plasmons in specific configurations, a net gain of FWM interaction of plasmonic edge states located in the topological bandgap can be achieved with a pump power of less than 10 nW. In particular, we find that the effective nonlinear edge-waveguide coefficient is about γ ≃ 1.1 × 1013 W-1 m-1, i.e., more than 10 orders of magnitude larger than that of commonly used, highly nonlinear silicon photonic nanowires. These findings could pave a new way for developing ultralow-power-consumption, highly integrated, and robust active photonic systems at deep-subwavelength scale for applications in quantum communications and information processing. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).Dynamic covalent polymer networks exhibit unusual adaptability while maintaining the robustness of conventional covalent networks. Typically, their network topology is statistically nonchangeable, and their material properties are therefore nonprogrammable. By introducing topological heterogeneity, we demonstrate a concept of topology isomerizable network (TIN) that can be programmed into many topological states. Using a photo-latent catalyst that controls the isomerization reaction, spatiotemporal manipulation of the topology is realized. The overall result is that the network polymer can be programmed into numerous polymers with distinctive and spatially definable (thermo-) mechanical properties. Among many opportunities for practical applications, the unique attributes of TIN can be explored for use as shape-shifting structures, adaptive robotic arms, and fracture-resistant stretchable devices, showing a high degree of design versatility. The TIN concept enriches the design of polymers, with potential expansion into other materials with variations in dynamic covalent chemistries, isomerizable topologies, and programmable macroscopic properties. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. 4-Phenylbutyric acid No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).Viscous liquids often exhibit flow slippage on solid walls. The occurrence of flow slippage has a large impact on the liquid transport and the resulting energy dissipation, which are crucial for many applications. It is natural to expect that slippage takes place to reduce the dissipation. However, (i) how the density fluctuation is affected by the presence of the wall and (ii) how slippage takes place through forming a gas layer remained elusive. Here, we report possible answers to these fundamental questions (i) Density fluctuation is intrinsically enhanced near the wall even in a quiescent state irrespective of the property of wall, and (ii) it is the density dependence of the viscosity that destabilizes the system toward gas-layer formation under shear flow. Our scenario of shear-induced gas-phase formation provides a natural physical explanation for wall slippage of liquid flow, covering the slip length ranging from a microscopic (nanometers) to macroscopic (micrometers) scale. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).Cavitation is a common damage mechanism in soft solids. Here, we study this using a phase separation technique in stretched, elastic solids to controllably nucleate and grow small cavities by several orders of magnitude. The ability to make stable cavities of different sizes, as well as the huge range of accessible strains, allows us to systematically study the early stages of cavity expansion. Cavities grow in a scale-free manner, accompanied by irreversible bond breakage that is distributed around the growing cavity rather than being localized to a crack tip. Furthermore, cavities appear to grow at constant driving pressure. This has strong analogies with the plasticity that occurs surrounding a growing void in ductile metals. In particular, we find that, although elastomers are normally considered as brittle materials, small-scale cavity expansion is more like a ductile process. Our results have broad implications for understanding and controlling failure in soft solids. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science.
Website: https://www.selleckchem.com/products/sodium-phenylbutyrate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team