Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
ium implants.
The biological performance of the plate-like nanostructured EDHA coating, which was comparable with that of the PSHA, improves early-stage osteogenic differentiation and osseointegration abilities and has great potential for enhancing the initial stability and long-term survival of uncemented or 3D porous titanium implants.
Micro-arc oxidation (MAO) is a fast and effective method to prepare nanoporous coatings with high biological activity and bonding strength. Simple micro/nano-coatingscannot fully meet the requirements of osteogenesis. To further improve the biological activity of a titanium surface, we successfully added biological magnesium (Mg
) to a coating by micro-arc oxidation and evaluated the optimal magnesium concentration in the electrolyte, biocompatibility, cell adhesion, proliferation, and osteogenesis in vitro.
Nanoporous titanium coatings with different concentrations of magnesium were prepared by micro-arc oxidation and characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The Mg
release ability of the magnesium-incorporated nanoporous titanium coatings was determined by inductively coupled plasma emission spectrometry (ICP-OES). The cytotoxicity of the magnesium-incorporated nanoporous titanium coatings was detected with live/dead double-staining tests. A Cts suggest that the new titanium metal coating with a dual effect of promoting bone morphology and supplying the biological ion Mg2+ can be beneficial for rapid osseointegration.
Adjuvants and immunotherapies designed to activate adaptive immunity to eliminate infectious disease and tumors have become an area of interest aimed at providing a safe and effective strategy to prevent or eliminate disease. Existing approaches would benefit from the development of immunization regimens capable of inducing efficacious cell-mediated immunity directed toward CD8
T cell-specific antigens. This goal is critically dependent upon appropriate activation of antigen-presenting cells (APCs) most notably dendritic cells (DCs). In this regard, polyanhydride particles have been shown to be effectively internalized by APCs and induce activation.
Here, a prophylactic vaccine regimen designed as a single-dose polyanhydride nanovaccine encapsulating antigen is evaluated for the induction of CD8
T cell memory in a model system where antigen-specific protection is restricted to CD8
T cells. Bone marrow-derived dendritic cells (BMDCs) are used as an in vitro model system to evaluate the magnitude and adjuvants.
Together, these results suggest that the use of a polyanhydride-based nanovaccine can be an effective approach to inducing antigen-specific CD8+ T cell memory by providing antigen delivery and DC activation while avoiding overt inflammatory responses typically associated with traditional adjuvants.
Developmental dysplasia of the hip (DDH) can increase the pressure between the joints, which causes secondary hip osteoarthritis. The aim of the present study was to fabricate poly(D, L-lactic acid)-poly(ethylene glycol)-poly(D, L-lactic acid) (PELA) electrospun fibrous scaffolds, immobilized with bone morphogenetic protein-2 (BMP-2), to repair the acetabulum defects.
The characteristics of PELA electrospun were analyzed using scanning electron microscopy, the release kinetics of BMP-2 in vitro were analyzed using enzyme-linked immunosorbent assays. Human mesenchymal stem cells (hMSCs) were used for in vitro experiments, the biocompatibility of the electrospinning materials was investigated using a cell counting kit-8 (CCK-8) kit, and osteogenic differentiation was tested via alkaline phosphatase (ALP) activity and relative gene expression. Eighteen miniature pig animal models were used in the in vivo experiment. The pigs were sacrificed at 24 weeks after surgery, and the reconstructed acetabulum was evaln.
PELA electrospun fibrous scaffolds are good sustained-release carriers, which can not only induce implant differentiation into cartilage and bone but also are completely degraded without toxicity. Therefore, the material can be used for bone and cartilage regeneration.[This corrects the article DOI 10.2147/IJN.S210548.].
Photoactivity "on-off" switchable nano-agents could shield phototoxicity until reaching target region, which immensely promoted photodynamic therapy. However, the masking ratio of nano-agents in vivo was dynamic and positively correlated with the phototoxicity induced by laser irradiation, in which case the timing of laser irradiation was unpredictable to maximize antitumor efficacy.
Herein, low molecular weight chitosan and hydrophobic polymethylacrylamide derivatives were linked via GSH cleavable 3, 3'-dithiodipropionic acid to construct polymeric micelles (Ce6-CSPD). The doxorubicin loading nano-agent (Ce6-CSPD/DOX) could quench both photoactivity and fluorescence of photosensitizer chlorin e6 (Ce6) and doxorubicin (DOX) under physiological condition by homo-fluorescence resonance energy transfer (homoFRET).
Once internalized by tumor cells, the photoactivity as well as fluorescence of Ce6 was recovered rapidly when motivated by intracellular high GSH. Specifically, the fluorescence intensity and phoopportunities for monitoring efficiency of chemo-photodynamic therapy in a timely and accurate manner.
In summary, we prepared homoFRET-based theranostic nano-agent (Ce6-CSPD/DOX) for monitoring PDT precisely and decreasing phototoxicity to normal organs before reaching target region. Under the guidance of dynamic fluorescence intensity, the appropriate laser irradiation timing could be monitored to maximize antitumor therapy efficacy, which offered opportunities for monitoring efficiency of chemo-photodynamic therapy in a timely and accurate manner.[This corrects the article DOI 10.2147/IJN.S184920.].[This corrects the article DOI 10.2147/IJN.S223164.].
Adherence to inhaled maintenance therapy is critical to managing chronic obstructive pulmonary disease (COPD), while increasing rescue medication usage may indicate worsening symptoms. selleck chemical This study evaluated adherence and rescue medication use in patients with COPD without a history of exacerbation who initiated combination therapy with budesonide/formoterol (B/F) or umeclidinium/vilanterol (UMEC/VI).
Retrospective observational study of commercially insured and Medicare Advantage with Part D enrollees who initiated UMEC/VI or B/F between January 1, 2014 and December 31, 2017 (earliest fill defined as index date). Eligibility criteria included age ≥40 years, 12 months continuous enrollment pre- and post-index, ≥1 pre-index COPD diagnosis, no pre-index asthma diagnosis, COPD-related exacerbations, or medication fills containing inhaled corticosteroids, long-acting β
-agonists, or long-acting muscarinic antagonists. Inverse probability of treatment weighting (IPTW) was used to balance treatment groups on potential confounders.
Homepage: https://www.selleckchem.com/products/mgh-cp1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team