Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The transition metal-based nitride (TMN) holds great promise as catalysts with high efficiency for energy-related technologies. Herein, on the basis of global structure search and density functional theory calculations, a novel two-dimensional (2D) TMN was identified RuN2 monolayer with tetracoordinated Ru atoms and isolated N═N dimers, which is revealed to possess high thermal, dynamic, and chemical stabilities as well as metallic nature, thus providing great feasibility for its practical application in electrochemical reactions. Remarkably, we found that the predicted RuN2 monolayer exhibits superior catalytic performance for the oxygen reduction reaction (ORR) with a rather high limiting potential (0.99 V) and an overwhelming four-electron reduction pathway selectivity. Thus, our results suggested the robust applicability of RuN2 monolayer as a novel non-Pt catalyst due to its excellent catalytic efficiency and outstanding selectivity for ORR, which not only proposes a new member to the hypercoordinate 2D TMN with novel properties, but also provides a feasible strategy to further develop novel TMN-based nanomaterials for electrocatalytic energy conversion.Properly cutting graphene into certain high-quality micro-/nanoscale structures in a cost-effective way has a critical role. Here, we report a novel approach to pattern graphene films by H2O-based magnetic-assisted ultraviolet (UV) photolysis under irradiation at 184.9 nm. By virtue of the paramagnetic characteristic, the photo-dissociated hydroxyl [OH(X2Π)] radicals are magnetized and have their oxidation capability highly enhanced through converting into an accelerated directional motion. Meanwhile, the precursor of H2O(X̃1A1) molecules distributes uniformly thanks to its weak diamagnetic characteristic, and there exists no instable diamagnetic intermediate to cause lateral oxidation. Possessing these unique traits, the H2O-based magnetic-assisted UV photolysis has the capability of making graphene microscale patterns with the linewidth down to 8.5 μm under a copper grid shadow mask. Furthermore, it is feasible to pattern graphene films into 40 nm-wide ribbons under ZnO nanowires and realize hybrid graphene/ZnO nanoribbon field-effect transistors with a hole mobility up to 7200 cm2·V-1·s-1. The X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry analyses reveal that OH(X2Π) radicals act as a strong oxidant and that another product of H(12S) adsorbs weakly on graphene.Soft pressure sensors based on liquid metals (LMs) may find broad applications, but it is challenging to fabricate such sensors that can achieve high stress resolution without additional parts. Herein, a method named laser-induced selective adhesion transfer (LISAT) is proposed. LISAT can pattern LM by selectively changing high adhesion of the poly(dimethylsiloxane) (PDMS) surface to LM into low adhesion with the aid of rough micro/nanostructures induced by a femtosecond laser. Based on this principle, LM microchannels with controllable shapes can be obtained by LM transfer and subsequent encapsulation. Since the smallest microchannel thickness is only ∼25 μm, sensor stress resolution can reach 0.0168 kPa without any additional parts to amplify the effect of pressure. As proof-of-concept demonstrations, the sensor is used for sensing the dynamic movement of a small sphere (∼0.16 g) and even an ant (∼0.025 g). LISAT provides a versatile platform for fabricating high-stress-resolution LM pressure sensors with controllable patterns and device structures to adapt to different application scenarios.Pancreatic cancer (PC) is one of the most common human malignancies worldwide and remains a major clinical challenge. Here, we found that benproperine phosphate (BPP), a cough suppressant, showed a significant anticancer effect on PC both in vitro and in vivo via the induction of autophagy-mediated cell death. SR1 antagonist in vitro Mechanistic studies revealed that BPP triggered AMPK/mTOR-mediated autophagy initiation and disturbed Ras-related protein Rab-11A (RAB11A)-mediated autophagosome-lysosome fusion, resulting in excessive accumulation of autophagosomes. Inhibition of autophagy or overexpression of RAB11A partially reversed BPP-induced growth inhibition in PC cells, suggesting that BPP might induce lethal autophagy arrest in PC cells. In conclusion, our results identify BPP as a potent antitumor agent for PC via the induction of autophagy arrest, therefore providing a new potential therapeutic strategy for the treatment of PC.
This study explored differences between primary Sjögren's syndrome-associated interstitial lung disease (pSS-ILD) patients with and without ILD progression, and analyzed the factors affecting the progression and prognosis of pSS-ILD.
This study is a retrospective cohort study which enrolled 113 pSS-ILD patients hospitalized between 2011 and 2017.
The 3-year survival rate of the pSS-ILD patients was 91.15%, and the 5-year survival rate was 84.07%. Univariate analysis showed that Raynaud's syndrome, hypoproteinemia, extensive lung involvement, possible usual interstitial pneumonia pattern were risk factors for the progression of ILD in patients with pSS-ILD, and cyclophosphamide was a protective factor for the progression of ILD in patients with pSS-ILD. Multiple logistic regression analysis showed that extensive lung involvement (odds ratio 4.143, 95% CI 1.203-14.267, P<.05) was an independent risk factor for the progression of pSS-ILD. Cox hazard analysis showed that pSS-ILD with hypoproteinemia (hazard ratio [HR] 17.758, 95% CI 4.753-66.340, P<-.05) and extensive lung involvement (HR 3.450, 95% CI 1.419-8.390, P<.05) were associated with worse survival of patients.
Extensive lung involvement is an independent risk factor for the progression of ILD in patients with pSS-ILD. Hypoproteinemia and extensive lung involvement are independent risk factors for mortality in patients with pSS-ILD, after controlling for potentially influential variables.
Extensive lung involvement is an independent risk factor for the progression of ILD in patients with pSS-ILD. Hypoproteinemia and extensive lung involvement are independent risk factors for mortality in patients with pSS-ILD, after controlling for potentially influential variables.
Homepage: https://www.selleckchem.com/products/stemRegenin-1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team