Notes
Notes - notes.io |
Homozygous and heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and genes involved in oxidation-reduction process. CONCLUSION This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A. gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.BACKGROUND Development of wheat cultivars with multiple disease resistance and high quality are major objectives in modern wheat breeding programs. Gene stacking is an efficient approach to achieve this target. In this study, we pyramided yellow rust resistance gene (Yr26), powdery mildew resistance gene (ML91260) and high-molecular-weight glutenin subunits Dx5 + Dy10 into the dwarf mutant of an elite wheat cultivar, Xiaoyan22. RESULTS Six pyramided wheat lines were obtained by molecular marker-assisted selection (MAS) and field evaluation of disease resistance. The desirable agronomic traits of pyramided lines, their identity with the original cultivar Xiaoyan22 except for plant height, tiller number and disease resistance, was achieved in this study. read more Meanwhile, the yield of pyramided lines is higher than Xiaoyan22 in the field test. In addition, analysis of flour quality indicated that the dough stability time of pyramided lines was longer than that of Xiaoyan22. CONCLUSIONS Six pyramided wheat lines with two disease resistance and high quality were achieved in this study. It is feasible to improve multiple agronomic traits simultaneously by rational application of MAS.BACKGROUND Strong artificial and natural selection causes the formation of highly conserved haplotypes that harbor agronomically important genes. GWAS combination with haplotype analysis has evolved as an effective method to dissect the genetic architecture of complex traits in crop species. RESULTS We used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with oleic acid (C181) in rapeseed. Six haplotype regions were identified as significantly associated with oleic acid (C181) that mapped to chromosomes A02, A07, A08, C01, C02, and C03. Additionally, whole-genome sequencing of 50 rapeseed accessions revealed three genes (BnmtACP2-A02, BnABCI13-A02 and BnECI1-A02) in the A02 chromosome haplotype region and two genes (BnFAD8-C02 and BnSDP1-C02) in the C02 chromosome haplotype region that were closely linked to oleic acid content phenotypic variation. Moreover, the co-expression network analysis uncovered candidate genes from these two different haplotype regions with potential regulatory interrelationships with oleic acid content accumulation. CONCLUSIONS Our results suggest that several candidate genes are closely linked, which provides us with an opportunity to develop functional haplotype markers for the improvement of the oleic acid content in rapeseed.BACKGROUND Maternal antibodies are key components of the protective responses of infants who are unable to produce their own IgG until 6 months of life. There is evidence that HIV-exposed uninfected children (HEU) have IgG levels abnormalities, that can be partially responsible for the higher vulnerability to infections in the first 2 years of the life of this population. This retrospective study aimed to characterize the dynamics in plasma levels of total IgG and their isotypes during the first 2 years of life in HEU infants exclusively breastfed through 6 months of age. METHODS Total IgG, IgG1, IgG2, IgG3 and IgG4 isotypes, and IgM and IgA plasma concentrations were determined by nephelometric methods in 30 Malawian infants born to HIV-positive women at month 1, 6 and 24 of life. RESULTS At 1-month infants had a median concentration of total IgG of 8.48 g/l, (IQR 7.57-9.15), with an overrepresentation of the IgG1 isotype (89.0% of total) and low levels of IgG2 (0.52 g/l, IQR, 0.46-0.65). Total IgG and IgG1 concentrations were lower at 6 months (- 2.1 and - 1.12 g/dl, respectively) reflecting disappearance of maternal antibodies, but at 24 months their levels were higher with respect to the reported reference values for age-matched pairs. Abnormal isotype distribution was still present at 24 months with IgG2 remaining strongly underrepresented (0.87 g/l, 7.5% of total IgG). CONCLUSION HIV exposure during pregnancy and breastfeeding seems to influence the IgG maturation and isotype distribution that persist in 2-year old infants.BACKGROUND We assessed the effects of a nurse mentoring program on neonatal mortality in eight districts in India. METHODS From 2012 to 2015, nurse mentors supported improvements in critical MNCH-related practices among health providers at primary health centres (PHCs) in northern Karnataka, South India. Baseline (n = 5240) and endline (n = 5154) surveys of randomly selected ever-married women were conducted. Neonatal mortality rates (NMR) among the last live-born children in the three years prior to each survey delivered in NM and non-NM-supported facilities were calculated and compared using survival analysis and cumulative hazard function. Mortality rates on days 1, 2-7 and 8-28 post-partum were compared. Cox survival regression analysis measured the adjusted effect on neonatal mortality of delivering in a nurse mentor supported facility. RESULTS Overall, neonatal mortality rate in the three years preceding the baseline and endline surveys was 30.5 (95% CI 24.3-38.4) and 21.6 (95% CI 16.3-28.7) respectively. There was a substantial decline in neonatal mortality between the survey rounds among children delivered in PHCs supported by NM 29.4 (95% CI 18.1-47.5) vs. 9.3 (95% CI 3.9-22.3) (p = 0.09). No significant declines in neonatal mortality rate were observed among children delivered in other facilities or at home. In regression analysis, among children born in nurse mentor supported facilities, the estimated hazard ratio at endline was significantly lower compared with baseline (HR 0.23, 95% CI 0.06-0.82, p = 0.02). CONCLUSION The nurse mentoring program was associated with a substantial reduction in neonatal mortality. Further research is warranted to delineate whether this may be an effective strategy for reducing NMR in resource-poor settings.
Read More: https://www.selleckchem.com/products/Bosutinib.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team