Notes
![]() ![]() Notes - notes.io |
The recognition of characteristic clinical phenotypes combined with nerve conduction studies allows pursuing subsequent diagnostic pathways that incorporate nerve conduction studies and additional diagnostic tests. This two-tiered approach promises higher yield and better cost-effectiveness in the diagnostic workup in patients with peripheral neuropathy.
The recognition of characteristic clinical phenotypes combined with nerve conduction studies allows pursuing subsequent diagnostic pathways that incorporate nerve conduction studies and additional diagnostic tests. This two-tiered approach promises higher yield and better cost-effectiveness in the diagnostic workup in patients with peripheral neuropathy.Stroke is a leading cause of acquired, permanent disability worldwide. Although the treatment of acute stroke has been improved considerably, the majority of patients to date are left disabled with a considerable impact on functional independence and quality of life. As the absolute number of stroke survivors is likely to further increase due to the demographic changes in our aging societies, new strategies are needed in order to improve neurorehabilitation. The most critical driver of functional recovery post-stroke is neural reorganization. For developing novel, neurobiologically informed strategies to promote recovery of function, an improved understanding of the mechanisms enabling plasticity and recovery is mandatory. This review provides a comprehensive survey of recent developments in the field of stroke recovery using neuroimaging and non-invasive brain stimulation. We discuss current concepts of how the brain reorganizes its functional architecture to overcome stroke-induced deficits, and also present evidence for maladaptive effects interfering with recovery. We demonstrate that the combination of neuroimaging and neurostimulation techniques allows a better understanding of how brain plasticity can be modulated to promote the reorganization of neural networks. Finally, neurotechnology-based treatment strategies allowing patient-tailored interventions to achieve enhanced treatment responses are discussed. The review also highlights important limitations of current models, and finally closes with possible solutions and future directions.2019 the DGN (Deutsche Gesellschaft für Neurology) published a new guideline on the diagnosis and non-interventional therapy of neuropathic pain of any etiology excluding trigeminal neuralgia and CRPS (complex regional pain syndrome). Neuropathic pain occurs after lesion or damage of the somatosensory system. Besides clinical examination several diagnostic procedures are recommended to assess the function of nociceptive A-delta and C-Fibers (skin biopsy, quantitative sensory testing, Laser-evoked potentials, Pain-evoked potentials, corneal confocal microscopy, axon reflex testing). First line treatment in neuropathic pain is pregabalin, gabapentin, duloxetine and amitriptyline. Second choice drugs are topical capsaicin and lidocaine, which can also be considered as primary treatment in focal neuropathic pain. Opioids are considered as third choice treatment. Botulinum toxin can be considered as a third choice drug for focal limited pain in specialized centers only. Carbamazepine and oxcarbazepine cannot be generally recommended, but might be helpful in single cases. In Germany, cannabinoids can be prescribed, but only after approval of reimbursement. selleck chemicals However, the use is not recommended, and can only be considered as off-label therapy within a multimodal therapy concept.The study design of PIMIDES, a trial based on patient-individualized transcranial electric neurostimulation of epileptic foci, is reported. Inclusion criteria include a predominant epileptic focus and pharmacoresistance to two antiepileptic drug treatments. The study is prospective, unblinded, and serves to assess the safety of subgaleal implantation and transcranial stimulation.This paper aims to provide an overview of the use and assessment of qualitative research methods in the health sciences. Qualitative research can be defined as the study of the nature of phenomena and is especially appropriate for answering questions of why something is (not) observed, assessing complex multi-component interventions, and focussing on intervention improvement. The most common methods of data collection are document study, (non-) participant observations, semi-structured interviews and focus groups. For data analysis, field-notes and audio-recordings are transcribed into protocols and transcripts, and coded using qualitative data management software. Criteria such as checklists, reflexivity, sampling strategies, piloting, co-coding, member-checking and stakeholder involvement can be used to enhance and assess the quality of the research conducted. Using qualitative in addition to quantitative designs will equip us with better tools to address a greater range of research problems, and to fill in blind spots in current neurological research and practice.
Cerebral small vessel disease (CSVD) is a disorder of brain vasculature that causes various structural changes in the brain parenchyma, and is associated with various clinical symptoms such as cognitive impairment and gait disorders. Structural changes of brain arterioles cannot be visualized with routine imaging techniques in vivo. However, optical coherence tomography (OCT) is thought to be a "window to the brain". Thus, retinal vessel parameters may correlate with CSVD characteristic brain lesions and cerebrospinal fluid biomarkers (CSF) of the neuropathological processes in CSVD like endothelial damage, microglial activation and neuroaxonal damage.
We applied OCT-based assessment of retinal vessels, magnetic resonance imaging (MRI), and CSF biomarker analysis in a monocentric prospective cohort of 24 patients with sporadic CSVD related stroke and cognitive impairment. MRI lesions were defined according to the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE). Biomarkers were assessed uFurther prospective studies should clarify whether retinal vessel parameters and CSF biomarkers may serve to monitor the natural course and treatment effects in clinical studies on CSVD.
In this exploratory study, WLR correlated with the volume of white matter hyperintensities, and markers of vascular integrity, microglial activation, and neuroaxonal damage in CSVD. Further prospective studies should clarify whether retinal vessel parameters and CSF biomarkers may serve to monitor the natural course and treatment effects in clinical studies on CSVD.
Read More: https://www.selleckchem.com/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team