Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
90 Jaccard measure (JM) for the MAB and LIB detection on 20 MHz dataset. The corresponding metrics on 40 MHz dataset are 0.85 and 0.84 JM respectively. Comparative evaluations with state-of-the-art published results demonstrate the competitiveness of the proposed MFAU-Net.Lens structures segmentation on anterior segment optical coherence tomography (AS-OCT) images is a fundamental task for cataract grading analysis. In this paper, in order to reduce the computational cost while keeping the segmentation accuracy, we propose an efficient segmentation method for lens structures segmentation. At first, we adopt an efficient semantic segmentation network in the work, and used it to extract the lens area image instead of the conventional object detection method, and then used it once again to segment the lens structures. Finally, we introduce the curve fitting processing (CFP) on the segmentation results. Experiment results show that our method has good performance on accuracy and processing speed, and could be applied to CASIA II device for practical applications.Since the thickness and shape of the choroid layer are indicators for the diagnosis of several ophthalmic diseases, the choroid layer segmentation is an important task. There exist many challenges in segmentation of the choroid layer. In this paper, in view of the lack of context information due to the ambiguous boundaries, and the subsequent inconsistent predictions of the same category targets ascribed to the lack of context information or the large regions, a novel Skip Connection Attention (SCA) module which is integrated into the U-Shape architecture is proposed to improve the precision of choroid layer segmentation in Optical Coherence Tomography (OCT) images. PP1 mouse The main function of the SCA module is to capture the global context in the highest level to provide the decoder with stage-by-stage guidance, to extract more context information and generate more consistent predictions for the same class targets. By integrating the SCA module into the U-Net and CE-Net, we show that the module improves the accuracy of the choroid layer segmentation.Karyotyping, consisting of single chromosome segmentation and classification, is widely used in the cytogenetic analysis for chromosome abnormality detection. Many studies have reported automatic chromosome classification with high accuracy. Nevertheless, they usually require manual chromosome segmentation beforehand. There are two critical issues in automatic chromosome segmentation 1) scarce annotated images for model training, and 2) multiple region combinations to form single chromosomes. In this study, two simulation strategies are proposed for training data argumentation to alleviate data scarcity. Besides, we present an optimization-based shape learning method to evaluate the shape of formed single chromosomes, which achieve the global minimum loss when segmented regions are correctly combined. Experiments on a public dataset demonstrate the effectiveness of the proposed method. The data simulation strategy has significantly increased the segmentation results by 15.8% and 46.3% of the Dice coefficient on non-overlapped and overlapped regions. Moreover, the proposed optimization-based method separates overlapped chromosomes with an accuracy of 96.2%.Most deep learning based vertebral segmentation methods require laborious manual labelling tasks. We aim to establish an unsupervised deep learning pipeline for vertebral segmentation of MR images. We integrate the sub-optimal segmentation results produced by a rule-based method with a unique voting mechanism to provide supervision in the training process for the deep learning model. Preliminary validation shows a high segmentation accuracy achieved by our method without relying on any manual labelling.The clinical relevance of this study is that it provides an efficient vertebral segmentation method with high accuracy. Potential applications are in automated pathology detection and vertebral 3D reconstructions for biomechanical simulations and 3D printing, facilitating clinical decision making, surgical planning and tissue engineering.Segmenting the bladder wall from MRI images is of great significance for the early detection and auxiliary diagnosis of bladder tumors. However, automatic bladder wall segmentation is challenging due to weak boundaries and diverse shapes of bladders. Level-set-based methods have been applied to this task by utilizing the shape prior of bladders. However, it is a complex operation to adjust multiple parameters manually, and to select suitable hand-crafted features. In this paper, we propose an automatic method for the task based on deep learning and anatomical constraints. First, the autoencoder is used to model anatomical and semantic information of bladder walls by extracting their low dimensional feature representations from both MRI images and label images. Then as the constraint, such priors are incorporated into the modified residual network so as to generate more plausible segmentation results. Experiments on 1092 MRI images shows that the proposed method can generate more accurate and reliable results comparing with related works, with a dice similarity coefficient (DSC) of 85.48%.Abdominal fat quantification is critical since multiple vital organs are located within this region. Although computed tomography (CT) is a highly sensitive modality to segment body fat, it involves ionizing radiations which makes magnetic resonance imaging (MRI) a preferable alternative for this purpose. Additionally, the superior soft tissue contrast in MRI could lead to more accurate results. Yet, it is highly labor intensive to segment fat in MRI scans. In this study, we propose an algorithm based on deep learning technique(s) to automatically quantify fat tissue from MR images through a cross modality adaptation. Our method does not require supervised labeling of MR scans, instead, we utilize a cycle generative adversarial network (C-GAN) to construct a pipeline that transforms the existing MR scans into their equivalent synthetic CT (s-CT) images where fat segmentation is relatively easier due to the descriptive nature of HU (hounsfield unit) in CT images. The fat segmentation results for MRI scans were evaluated by expert radiologist.
Read More: https://www.selleckchem.com/products/pp1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team