Notes
![]() ![]() Notes - notes.io |
Dysfunctional resolution of intestinal inflammation and altered mucosal healing are essential features in the pathogenesis of inflammatory bowel disease (IBD). Intestinal macrophages are vital in the process of inflammation resolution, but the mechanisms underlying their mucosal healing capacity remain elusive.
We investigated the role of the prostaglandin E
(PGE
) receptor PTGER4 on the differentiation of intestinal macrophages in patients with IBD and mouse models of intestinal inflammation. We studied mucosal healing and intestinal epithelial barrier regeneration in Csf1r-iCre Ptger4
mice during dextran sulfate sodium (DSS)-induced colitis. The effect of PTGER4
macrophage secreted molecules was investigated on epithelial organoid differentiation.
Here, we describe a subset of PTGER4-expressing intestinal macrophages with mucosal healing properties both in humans and mice. Csf1r-iCre Ptger4
mice showed defective mucosal healing and epithelial barrier regeneration in a model of DSS colitis. Meway for the development of a new class of therapeutic targets to promote macrophage healing functions and favour remission in patients with IBD.Perception improves with repeated exposure. Evidence has shown object recognition can be improved by training for multiple days in adults. Recently, a study of Amar-Halpert et al. (2017) has compared the learning effect of repetitive and brief, at-threshold training on a discrimination task and reported similar improvement in both groups. The finding is interpreted as evidence that memory reactivation benefits discrimination learning. This raises the question how this process might influence different perceptual tasks, including tasks with more complex visual stimuli. Here, this preregistered study investigates whether reactivation induces improvements in a visual object learning task that includes more complex visual stimuli. Participants were trained to recognize a set of objects during 5 d of training. After the initial training, a group was trained with repeated practice, the other a few near-threshold reactivation trials. In both groups, we found improved object recognition at brief exposure durations. Traditional intense training shows a daily improvement; however, the group with reactivation does not reach the same level of improvement. Our findings show that reactivation has a smaller effect relative to large amounts of practice.We can focus visuospatial attention by covertly attending to relevant locations, moving our eyes, or both simultaneously. How does shifting versus holding covert attention during fixation compare with maintaining covert attention across saccades? We acquired human fMRI data during a combined saccade and covert attention task. On Eyes-fixed trials, participants either held attention at the same initial location ("hold attention") or shifted attention to another location midway through the trial ("shift attention"). On Eyes-move trials, participants made a saccade midway through the trial, while maintaining attention in one of two reference frames the "retinotopic attention" condition involved holding attention at a fixation-relative location but shifting to a different screen-centered location, whereas the "spatiotopic attention" condition involved holding attention on the same screen-centered location but shifting relative to fixation. We localized the brain network sensitive to attention shifts (shift > hold attention), and used multivoxel pattern time course (MVPTC) analyses to investigate the patterns of brain activity for spatiotopic and retinotopic attention across saccades. In the attention shift network, we found transient information about both whether covert shifts were made and whether saccades were executed. Moreover, in this network, both retinotopic and spatiotopic conditions were represented more similarly to shifting than to holding covert attention. An exploratory searchlight analysis revealed additional regions where spatiotopic was relatively more similar to shifting and retinotopic more to holding. Thus, maintaining retinotopic and spatiotopic attention across saccades may involve different types of updating that vary in similarity to covert attention "hold" and "shift" signals across different regions.Signaling between neurons and glia is necessary for the formation of functional neural circuits. A role for microglia in the maturation of connections in the medial nucleus of the trapezoid body (MNTB) was previously demonstrated by postnatal microglial elimination using a colony stimulating factor 1 receptor (CSF1R). Defective pruning of calyces of Held and significant reduction of the mature astrocyte marker glial fibrillary acidic protein (GFAP) were observed after hearing onset. Here, we investigated the time course required for microglia to populate the mouse MNTB after cessation of CSF1R inhibitor treatment. We then examined whether defects seen after microglial depletion were rectified by microglial repopulation. We found that microglia returned to control levels at four weeks of age (18 d postcessation of treatment). Calyceal innervation of MNTB neurons was comparable to control levels at four weeks and GFAP expression recovered by seven weeks. selleck We further investigated the effects of microglia elimination and repopulation on auditory function using auditory brainstem recordings (ABRs). Temporary microglial depletion significantly elevated auditory thresholds in response to 4. 8, and 12 kHz at four weeks. Treatment significantly affected latencies, interpeak latencies, and amplitudes of all the ABR peaks in response to many of the frequencies tested. These effects largely recovered by seven weeks. These findings highlight the functions of microglia in the formation of auditory neural circuits early in development. Further, the results suggest that microglia retain their developmental functions beyond the period of circuit refinement.
Obesity and metabolic syndrome are associated with major adverse cardiovascular events (MACE). However, whether distinct metabolic phenotypes differ in risk for coronary artery disease (CAD) and MACE is unknown. We sought to determine the association of distinct metabolic phenotypes with CAD and MACE.
We included patients from the Prospective Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE) who underwent coronary computed tomography (CT) angiography. Obesity was defined as a BMI ≥30 kg/m
and metabolically healthy as less than or equal to one metabolic syndrome component except diabetes, distinguishing four metabolic phenotypes metabolically healthy/unhealthy and nonobese/obese (MHN, MHO, MUN, and MUO). Differences in severe calcification (coronary artery calcification [CAC] ≥400), severe CAD (≥70% stenosis), high-risk plaque (HRP), and MACE were assessed using adjusted logistic and Cox regression models.
Of 4,381 patients (48.4% male, 60.5 ± 8.1 years of age), 49.4% were metabolically healthy (30.
Here's my website: https://www.selleckchem.com/products/PCI-24781.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team