Notes
![]() ![]() Notes - notes.io |
IgE induced by type 2 immune responses in atopic dermatitis is implicated in the progression of atopic dermatitis to other allergic diseases, including food allergies, allergic rhinitis, and asthma. However, the keratinocyte-derived signals that promote IgE and ensuing allergic diseases remain unclear. Herein, in a mouse model of atopic dermatitis-like skin inflammation induced by epicutaneous Staphylococcus aureus exposure, keratinocyte release of IL‑36α along with IL-4 triggered B cell IgE class-switching, plasma cell differentiation, and increased serum IgE levels-all of which were abrogated in IL-36R-deficient mice or anti-IL‑36R-blocking antibody-treated mice. Moreover, skin allergen sensitization during S. aureus epicutaneous exposure-induced IL-36 responses was required for the development of allergen-specific lung inflammation. In translating these findings, elevated IL‑36 cytokines in human atopic dermatitis skin and in IL‑36 receptor antagonist-deficiency patients coincided with increased serum IgE levels. Collectively, keratinocyte-initiated IL‑36 responses represent a key mechanism and potential therapeutic target against allergic diseases.Immune checkpoint inhibitors (ICIs) have transformed the treatment of various cancers, including malignancies once considered untreatable. These agents, however, are associated with inflammation and tissue damage in multiple organs. Myocarditis has emerged as a serious ICI-associated toxicity, because, while seemingly infrequent, it is often fulminant and lethal. The underlying basis of ICI-associated myocarditis is not completely understood. While the importance of T cells is clear, the inciting antigens, why they are recognized, and the mechanisms leading to cardiac cell injury remain poorly characterized. These issues underscore the need for basic and clinical studies to define pathogenesis, identify predictive biomarkers, improve diagnostic strategies, and develop effective treatments. An improved understanding of ICI-associated myocarditis will provide insights into the equilibrium between the immune and cardiovascular systems.Tubulointerstitial accumulation of matrix proteins in human kidney biopsies is the best predictor of renal survival. In this issue of the JCI, Yen-Ting Chen et al. elegantly show that an endoplasmic reticulum resident protein, thioredoxin domain containing 5 (TXNDC5), is a key mediator of experimental kidney fibrosis. The researchers used knockout or conditional knockout animals to reduce Txndc5 expression, which reduced the accumulation of fibrous tissue in three models of chronic kidney disease (CKD), including unilateral ureteral obstruction, unilateral ischemia reperfusion injury, and folic acid nephropathy. More importantly, the studies demonstrate that the activated fibroblasts are almost exclusively responsible for producing matrix proteins. The study also showed that reducing Txndc5 in mice after tubulointerstitial fibrosis (TIF) was established mitigated the fibrosis. These experiments have obvious clinical importance but warrant caution because a key question remains unanswered. The impact of reducing TXNDC5 on renal function itself, the very heart of CKD, demands further exploration.The involvement of nitric oxide (NO) in preventing bone loss has long been hypothesized, but despite decades of research the mechanisms remain obscure. In this issue of the JCI, Jin et al. explored NO deficiency using human cell and mouse models that lacked argininosuccinate lyase (ASL), the enzyme involved in synthesizing arginine and NO production. Osteoblasts that did not express ASL produced less NO and failed to differentiate. Notably, in the context of Asl deficiency, heterozygous deletion of caveolin 1, which normally inhibits NO synthesis, restored NO production, osteoblast differentiation, glycolysis, and bone mass. find more These experiments suggest that ASL regulates arginine synthesis in osteoblasts, which leads to enhanced NO production and increased glucose metabolism. After a period when research slowed, these studies, like the legendary phoenix, renew the exploration of NO in bone biology, and provide exciting translational potential.Lysosomal storage disorders (LSD) are a group of inherited metabolic diseases characterized by lysosomal enzyme deficiency. The cardiac phenotype includes cardiomyopathy with eventual heart failure. Lysosome-mediated degradation processes, such as autophagy, maintain cellular homeostasis by discarding cellular debris and damaged organelles. Under stress, the transcription factor EB (TFEB) moves into the nucleus to activate transcription of lysosome biogenesis and autophagic proteins. In this issue of the JCI, Ikeda et al. report on their exploration of the signaling pathway involved with regulating lysosomal proteins specifically in the heart. The researchers generated a mouse model for LSD that was restricted to cardiac tissue. Unexpectedly, modulation of TFEB alone was insufficient to fully rescue the underlying clearance defect in lysosomal-associated disorders. The authors identified the Yes-associated protein (YAP)/TFEB signaling pathway as a key regulator of autophagosomes. These findings suggest that undigested autophagosomes accumulate and result in the cell death and cardiac dysfunction observed with LSD.Approaches using a single type of data have been applied to classify human tumors. Here we integrate imaging features and transcriptomic data using a prospectively collected tumor bank. We demonstrate that increased maximum standardized uptake value on pretreatment 18F-fluorodeoxyglucose-positron emission tomography correlates with epithelial-to-mesenchymal transition (EMT) gene expression. We derived and validated 3 major molecular groups, namely squamous epithelial, squamous mesenchymal, and adenocarcinoma, using prospectively collected institutional (n = 67) and publicly available (n = 304) data sets. Patients with tumors of the squamous mesenchymal subtype showed inferior survival outcomes compared with the other 2 molecular groups. High mesenchymal gene expression in cervical cancer cells positively correlated with the capacity to form spheroids and with resistance to radiation. CaSki organoids were radiation-resistant but sensitive to the glycolysis inhibitor, 2-DG. These experiments provide a strategy for response prediction by integrating large data sets, and highlight the potential for metabolic therapy to influence EMT phenotypes in cervical cancer.
Here's my website: https://www.selleckchem.com/products/ionomycin.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team