NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Specialized take note: A fast and correct systematic dose calculation protocol with regard to 125 We seed-loaded stent apps.
Microbial biodiversity was different in the plant compared to the IR and seemed to be influenced by the season.Conversion of food waste into 2,3-butanediol (2,3-BDO) via microbial fermentation provides a promising way to reduce waste disposal to landfills and produce sustainable chemicals. However, sterilization of food waste, an energy- and capital-costly process, is generally required before fermentation to avoid any contamination, which reduces the energy net output and economic feasibility of food waste fermentation. In this study, we investigated the non-sterile fermentation of food waste to produce 2,3-BDO using a newly isolated thermophilic and alkaliphilic B. licheniformis YNP5-TSU. Three unitary food waste samples (i.e., pepper, pineapple, cabbage wastes) and one miscellaneous food waste mixture were respectively inoculated with B. licheniformis YNP5-TSU under non-sterile conditions. At 50 °C and an initial pH of 9.0, B. licheniformis YNP5-TSU was able to consume all sugars in food waste and produce 5.2, 5.9, 5.9 and 4.3 g/L of 2,3-BDO within 24 h from pepper, pineapple, cabbage and miscellaneous wastes, respectively, corresponding to a yield of 0.40, 0.38, 0.41 and 0.41 g 2,3-BDO/g sugar. These 2,3-BDO concentrations and yields from the non-sterile fermentations were comparable to those from the traditional sterile fermentations, which produced 4.0-6.8 g/L of 2,3-BDO with yields of 0.31-0.48 g 2,3-BDO/g sugar. Moreover, B. licheniformis was able to ferment various food wastes (pepper, pineapple and miscellaneous wastes) without any external nutrient addition and produce similar 2,3-BDO quantities. The non-sterile fermentation of food waste using novel thermophilic and alkaliphilic B. licheniformis YNP5-TSU provides a robust and energy-efficient approach to convert food waste to high-value chemicals.Microplastics (MPs) in environments are widely concerned in recent years due to the widely occurrence and potential risk to environments. With a large amount of plastic waste discarded into the landfills, leachate generated from landfills was found to be an important pollution source of MPs. However, the removal efficiency and characteristics of MPs in leachate treatment system were not clear. In this study, the concentration variation and the removal performance of MPs in leachate treatment system with the process of pretreatment + biotreatment + advanced treatment were investigated. The results showed that 58.33% of MPs were removed during the leachate treatment process. The Ultrafiltration had the highest efficiency of removing MPs, but the advanced treatment technologies (Nanofiltration and Reverse Osmosis) did not contribute to the removal of MPs. Furthermore, the removal performance of MPs in leachate treatment process was determined by MPs properties, such as size, shape and polymer type. The whole leachate treatment process had higher removal efficiencies for particle MPs compared to fiber MPs, and only 50% of fiber MPs were removed in biological treatment and advanced treatment. α-cyano-4-hydroxycinnamic mw Ultrafiltration had better removal effect on microplastics with the size of less than 1 mm, and MPs less than 0.5 mm were almost removed by advanced treatment but accumulated in the sludge with the abundance of 0.893 ± 0.252 items/g. The results showed that a considerable amount of MPs (106 items/day) discharged with the effluent (3200 t/d), and most removed MPs from leachate accumulated in sludge, which would cause potential risk to the environments.Orange peel essential oil is a common value-added product from orange juice processing waste. It is antimicrobial and used to produce antimicrobial films and coatings. This study reports the first development of antimicrobial films using orange peel as powder (OPP) instead of the extracted essential oil. The OPP amount needed for antimicrobial films was determined by studying the OPP effects on conidia germination inhibition (minimum inhibitory concentration (MIC)) and mycelial growth reduction for Botrytis cinerea, Aspergillus niger, and Penicillium sp. This amount was incorporated into linear low-density polyethylene using plastic processing machinery. The resulting LLDPE/OPP composite film was characterized for antimicrobial activity against Botrytis cinerea, antimicrobial compound release, and mechanical, barrier, and optical properties. We found the same OPP MIC (8.4 mg OPP/mL air) for the three fungi although their mycelial growth kinetics and conidia germination inhibition periods varied with OPP amount differently. 21.1 mg OPP/mL air completely inhibited the germination of Penicillium sp., B. cinerea, and A. niger conidia for 3, 2, and 1 days. The antimicrobial film was a LLDPE/OPP composite with 46% plastic replacement that reduced B. cinerea growth by 30% over a 7-day storage period at 23 °C, less than OPP due to limonene/citral reduction during processing. Plastic replacement resulted in films with the barrier and mechanical properties of plastics commonly used in food packaging. This study demonstrates the OPP antimicrobial capacity against food spoilage microorganisms and its suitability to produce antimicrobial packaging for food applications and presents a novel approach to utilizing orange juice processing waste.Anaerobic digestion is a promising way for resource recovery from waste cooking oil (WCO) due to its high bio-methanation potential. In-situ mild alkaline (pH 8) enhanced two-stage continuous stirred tank reactors (ALK-2-CSTRs) were implemented to explore its efficiency in co-digesting WCO and sewage sludge with stepwise increase of WCO in the co-substrates. Results demonstrate that the ALK-2-CSTRs effectively promoted methane yield from the co-substrates via promoting hydrolysis, long chain fatty acids (LCFAs) degradation and protecting methanogens from exposure to high concentration of LCFAs directly. The maximum methane yield of the ALK-2-CSTRs is 39.2% higher than that of a single stage CSTR system at the optimal feed mixture of 4555 (WCOSS [VS]). The thermophilic operation applied to the stage-1 of the ALK-2-CSTRs failed to improve the methane yield when the methanogenic performance was stable; while upon WCO overloaded, the elevated temperature mitigated the deterioration of methanogenesis by stimulating the bioconversion of the toxic LCFAs, especially the unsaturated oleic acid.
My Website: https://www.selleckchem.com/products/alpha-cyano-4-hydroxycinnamic-acid-alpha-chca.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.