Notes
![]() ![]() Notes - notes.io |
Proanthocyanidins extracted from Chinese berry leaves (CBLPs) were heated with rice starch in aqueous solution to prepare polyphenols-starch complexes. The physicochemical properties of the complexes were characterized with XRD, DSC, RVA and FT-IR and starch constituents were also analyzed with an enzyme method. Results indicated that the addition of CBLPs destroyed the long ordered structure of rice starch rather than the short ordered structure, since the crystallinity decreased from 21.96% to 18.90% and the ratio of 1047 cm-1/1022 cm-1 showed little difference, consistent with the lower ΔH of complexes with higher CBLPs content. Additionally, the CBLPs-rice starch complexes showed a significantly lower content of rapidly digested starch (RDS, 45.64 ± 3.25%) than that of the native rice starch (67.76 ± 2.15%). These results indicated that CBLPs complexes with rice starch might be a novel way to prepare functional starch with slower digestion.Odor-taste interaction has become a popular salt reduction method. In this study, the odorants associated with saltiness in soy sauce were selected by gas chromatography/olfactometry-associated taste (GC/O-AT), and their ability to induce saltiness/umami enhancement was verified by sensory evaluation. A total of 30 taste-associated odorants were perceived, including 5 saltiness-associated and 2 umami-associated odorants. Among them, 3-(methylthio)propanal, 1-octen-3-ol, 3-(methylthio)-1-propanol, and 2,5-dimethylpyrazine could significantly enhance saltiness of 0.3% NaCl solution (p less then 0.05). Furthermore, 3-(methylthio)propanal, maltol, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (HDMF), dimethyl trisulfide, 3-(methylthio)-1-propanol and 1-octen-3-ol could also enhance the umami taste in 0.3% monosodium glutamate solution. Compared with zero or strong-salt-content (0.8%) solution, the saltiness of weak-salt-content (0.3%) was enhanced significantly by adding the odorant. These results suggest that salty food is an efficient source for selecting saltiness-enhancing odorants, which could be used to compensate NaCl reduction in food.Different processing methods of Chinese water chestnut (CWC; Eleocharis dulcis (Burm.f.) Trin. ex Hensch.) steaming with skin (WPC), cooking with skin (WPS), steaming with peeling (PS), fresh cutting (FF) and cooking with peeling (PC) were compared. Liquid chromatography-mass spectrometry was used to analyze the metabolic profiles of the processed samples. A total of 454 metabolites, including 123 flavonoids and 57 phenylpropanoids, were characterized. The flavonoid and phenylpropanoid profiles were distinguished using PCA. Eighteen flavonoids and six phenylpropanoids were detected and quantitated in the WPC and WPS samples but not in the FF, PC and PS samples. In addition to the O-hexoside of tricin, kaempferol and luteolin were the predominant flavonoids in the WPC and WPS samples, and all three compounds were higher in the WPC and WPS samples than in the FF sample. This study provides new results regarding differences in the metabolite profile of CWC processed with different methods.Buckwheat is a gluten-free crop under the family Polygonaceae abundant with beneficial phytochemicals that provide significant health benefits. It is cultivated and adapted in diverse ecological zones all over the world. Recently its popularity is expanding as a nutrient-rich healthy food with low-calories. The bioactive compounds in buckwheat are flavonoids (i.e., rutin, quercetin, orientin, isoorientin, vitexin, and isovitexin), fatty acids, polysaccharides, proteins, and amino acids, iminosugars, dietary fiber, fagopyrins, resistant starch, vitamins, and minerals. Buckwheat possesses high nutritional value due to these bioactive compounds. Additionally, several essential bioactive factors that have long been gaining interest because these compounds are beneficial for healing and preventing several human diseases. The present review demonstrates an overview of the recent researches regarding buckwheat phytochemicals and particularly focusing on the distinct function of bioactive components with their health benefits.We establish the total amino acids (AA) concentration in wash water as an alternative indicator of free chlorine (FC) levels, and develop a model to predict FC concentration based on modeling the reaction kinetics of chlorine and amino acids. learn more Using single wash of iceberg lettuce, green cabbage, and carrots, we report the first in situ apparent reaction rate β between FC and amino acids in the range of 15.3 - 16.6 M-1 s-1 and an amplification factor γ in the range of 11.52-11.94 for these produce. We also report strong linear correlations between AA levels and produce-to-water ratio (R2 = 0.87), and between chemical oxygen demand (COD) and AA concentrations (R2 = 0.87). The values of the parameters γ and β of the model were validated in continuous wash experiments of chopped iceberg lettuce, and predicted the FC (R2 = 0.96) and AA (R2 = 0.92) levels very well.The inhibition mechanism of the texture deterioration of tilapia fillets after treatment with polyphenols during partial freezing for 49 days was studied. Carnosic acid (CA), procyanidin (PA), quercetin (QE), and resveratrol (RSV) treatments had significantly higher hardness values (over 230 g) than the control group (183 g) on day 49 (P less then 0.05). Polyphenol treatments were effective in delaying the protein degradation, lipid oxidation and spoilage microbe growth. Moreover, the kinetic model showed that the predicted shelf life of tilapia fillets treated with PA (102 d) was extended by 25 d compared to the control group (77 d). It was the proposed possible mechanism that polyphenols comprehensively maintained the protein conformation (increased hydrogen bonds and decreased disulfide bonds) and retarded protein denaturation and degradation, protecting the texture of the fillets. Therefore, polyphenols can be used to maintain texture and extend the shelf life of tilapia fillets during partial freezing.This study provides a robust and reproducible approach for selective extraction of rosmarinic acid (RA) using molecularly imprinted polymers (MIPs). Computational modeling and UV spectroscopic analysis were performed to optimize MIP synthesis. Consequently, six different bulk and surface imprinted polymers were generated using RA as the template. Binding performance of the imprinted polymers was evaluated using static equilibrium and complementary dynamic rebinding experiments. Despite the high selectivity of thus generated surface imprinted polymers, the corresponding bulk polymers exhibited better binding performance when serving as sorbents during solid phase extraction (SPE). An optimized molecularly imprinted solid phase extraction (MISPE) protocol was developed in respect to loaded amount of RA, composition of the loading solution, washing solvent, and elution volume. Thereby, a remarkably selective extraction of RA from real-world Rosmarinus officinalis L. extract with a recovery rate and purity of 81.
Homepage: https://www.selleckchem.com/products/hs94.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team