NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Combination involving luminescent terbium-based metal-organic composition for quantitative diagnosis involving nitrite and ferric ions throughout normal water samples.
The description of the infrastructure and architecture is followed by a practical example on how to implement a digitized workflow. This approach is highly useful for - but not limited to - the biotechnological laboratory and has the potential to increase productivity in both industry and research for example by enabling automated documentation.The quality by design approach was introduced to the biopharmaceutical industry over 15 years ago. This principle is widely implemented in the characterization of monoclonal antibody production processes. Anyway, the early process phase, namely the inoculum expansion, was not yet investigated and characterized for most processes. In order to increase the understanding of early process parameter interactions and their influence on the later production process, a risk assessment followed by a design of experiments approach was conducted. The DoE included the critical parameters methotrexate (MTX) concentration, initial passage viable cell density and passage duration. Multivariate data analysis led to mathematical regression models and the establishment of a designated design space for the studied parameters. It was found that the passage duration as well as the initial viable cell density for each passage during the inoculum expansion have severe effects on the growth rate and viability of the early process phase. Furthermore, the variations during the inoculum expansion directly influenced the production process responses. This carry-over of factor effects highlights the crucial impact of early process failures and the importance of process analysis and control during the first part of mAb production processes.In this contribution, we studied the effect of electro-fermentation on the butanol production of Clostridium pasteurianum strains by a targeted metabolomics approach. Two strains were examined an electrocompetent wild type strain (R525) and a mutant strain (dhaB mutant) lacking formation of 1,3-propanediol (PDO). The dhaB-negative strain was able to grow on glycerol without formation of PDO, but displayed a high initial intracellular NADH/NAD ratio which was lowered subsequently by upregulation of the butanol production pathway. Both strains showed a 3-5 fold increase of the intracellular NADH/NAD ratio when exposed to cathodic current in a bioelectrochemical system (BES). This drove an activation of the butanol pathway and resulted in a higher molar butanol to PDO ratio for the R525 strain. Nonetheless, macroscopic electron balances suggest that no significant amount of electrons derived from the BES was harvested by the cells. Overall, this work points out that electro-fermentation can be used to trigger metabolic pathways and improve product formation, even when the used microbe cannot be considered electroactive. Accordingly, further studies are required to unveil the underlying (regulatory) mechanisms.Real-time information about the concentrations of substrates and biomass is the key to accurate monitoring and control of bioprocess. However, on-line measurement of these variables is a challenging task and new measurement systems are still required. An alternative are software sensors, which can be used for state and parameter estimation in bioprocesses. The software sensors predict the state of the process by using mathematical models as well as data from measured variables. The Kalman filter is a type of such sensors. In this paper, we have used the Unscented Kalman Filter (UKF) which is a nonlinear extension of the Kalman filter for on-line estimation of biomass, glucose and ethanol concentration as well as for estimating the growth rate parameters in S. cerevisiae batch cultivation, based on infrequent ethanol measurements. The UKF algorithm was validated on three different cultivations with variability of the substrate concentrations and the estimated values were compared to the off-line values. The results obtained showed that the UKF algorithm provides satisfactory results with respect to estimation of concentrations of substrates and biomass as well as the growth rate parameters during the batch cultivation.DOI 10.1002/elsc.202000058 Successful operation, control and optimization of biotechnological process depend on reliable real-time available measurements of the process variables. Although some hardware sensors are readily available, they often have several drawbacks cost, sample destruction, discrete-time measurements, processing delay, sterilization, disturbances in the hydrodynamic conditions inside the bioreactor, etc. It is therefore of interest to use software sensors [29, 30]. The central idea behind a soft sensor is to use easily accessible on-line data for the estimation of other process variables that are either difficult to measure or only measured at low frequency [30]. The figure illustrates a software sensor for on-line monitoring of substrate and biomass production in backers yeast cultivation. For details see article DOI 10.1002/elsc.202000058 on page 169.Ethyl acetate is currently produced from fossil carbon resources. This ester could also be microbially synthesized from sugar-rich wastes of the food industry. Wild-type strains with GRAS status are preferred for such applications. Production of ethyl acetate by wild-type yeasts has been repeatedly reported, but comparative studies with several strains at various induction modes are largely missing. Here, synthesis of ethyl acetate by three yeasts with GRAS status, Kluyveromyces marxianus DSM 5422, Cyberlindnera jadinii DSM 2361 and Wickerhamomyces anomalus DSM 6766, was studied under identical and well-defined conditions in an aerated bioreactor, by inducing the ester synthesis via iron or oxygen limitation. Balancing the ester synthesis was based on measured concentrations of ethyl acetate in the exhaust gas, delivering masses of synthesized ester and synthesis rates in a high temporal resolution. All tested yeasts synthesized ethyl acetate under these conditions, but the intensity varied with the strain and induction mode. The highest yields were achieved under iron limitation with K. marxianus (0.182 g g-1) and under oxygen limitation with W. anomalus (0.053 g g-1). check details Iron limitation proved to be the better inducer for ester synthesis while oxygen limitation favored ethanol formation. K. marxianus DSM 5422 was the most potent producer of ethyl acetate exhibiting the highest biomass-specific synthesis rate of 0.5 g g-1h-1 under moderate iron limitation.
Homepage: https://www.selleckchem.com/products/isa-2011b.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.