Notes
![]() ![]() Notes - notes.io |
every mystery associated with "DIC" and other associated thrombotic disorders. Thus, sepsis-associated coagulopathy is not "DIC", but is endotheliopathy-associated vascular microthrombotic disease.
LOXL1-AS1 is a long non-coding RNA (lncRNA) that plays crucial roles in various cancers. However, the functional role of LOXL1-AS1 in laryngocarcinoma remains unclear. Thus we planned to probe into the function and underlying mechanism of LOXL1-AS1 in laryngocarcinoma.
Gene expression was evaluated in laryngocarcinoma cells using RT-qPCR. The ability of cell proliferation and migration was assessed by CCK8, colony formation, wound healing and transwell assays. The interaction among LOXL1-AS1, miR-589-5p and TRAF6 was detected by Ago2-RIP, RNA pull down and luciferase reporter assays.
LOXL1-AS1 was overexpressed in laryngocarcinoma cells. Silencing of LOXL1-AS1 suppressed cell proliferation, migration and EMT in laryngocarcinoma. Moreover, miR-589-5p, the downstream of LOXL1-AS1, directly targeted TRAF6 in laryngocarcinoma. Importantly, LOXL1-AS1 augmented TRAF6 expression in laryngocarcinoma cells by sequestering miR-589-5p. Besides, miR-589-5p worked as a tumor-inhibitor while TRAF6 functioned as a tumor-facilitator in laryngocarcinoma. Of note, rescue experiments both in vitro and in vivo validated that LOXL1-AS1 aggravated the malignancy in laryngocarcinoma by targeting miR-589-5p/TRAF6 pathway.
LOXL1-AS1 promotes the proliferation and migration of laryngocarcinoma cells through absorbing miR-589-5p to upregulate TRAF6 expression.
LOXL1-AS1 promotes the proliferation and migration of laryngocarcinoma cells through absorbing miR-589-5p to upregulate TRAF6 expression.
Tumors display a high rate of glucose metabolism and the SLC2A (also known as GLUT) gene family may be central regulators of cellular glucose uptake. However, roles of SLC2A family in mechanism of metabolite communication with immunity in gastric cancer remains unknown.
Bioinformatics analysis and IHC staining were used to reveal the expression of SLC2A3 in gastric cancer and the correlation with survival prognosis. Real-time PCR, western blots, OCR, ECAR, lactate production and glucose uptake assays were applied to determine the effect of SLC2A3 on glycolysis reprogramming. We then investigated the consequences of SLC2A3 upregulation or inhibition on aerobic glycolysis, also explored the underlying mechanism. Bioinformatics analysis and in vitro and in vivo research were used to reveal the role of SLC2A3 in macrophage infiltration and transition.
Here, we show that SLC2A3 acts as a tumor promoter and accelerates aerobic glycolysis in GC cells. Mechanistically, the SLC2A3-STAT3-SLC2A3 feedback loop could promote phosphorylation of the STAT3 signaling pathway and downstream glycolytic targeting genes. Moreover, SLC2A3 potentially contributes to M2 subtype transition of macrophage infiltration in the GC microenvironment.
SLC2A3 could be used as a prognostic biomarker to determine prognosis and immune infiltration in GC and may provide an intervention strategy for GC therapy.
SLC2A3 could be used as a prognostic biomarker to determine prognosis and immune infiltration in GC and may provide an intervention strategy for GC therapy.
Non-small cell lung cancer (NSCLC) includes lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). MicroRNA (miRNA) plays an important role in the regulation of post-transcriptional gene expression in animals and plants, especially in lung adenocarcinoma.
MiR-1307-5p is an miRNA with significant differences screened by the second generation of high-throughput sequencing in the early stage of our research group. In the current study, a series of in vitro and in vivo experiments were carried out. MiR-1307-5p mimic, miR-1307-5p inhibitor, and NC were transfected into A549 and H1299 lung adenocarcinoma cells. The correlation between miR-1307-5p and clinicopathological features in pathological samples was analyzed using a lung adenocarcinoma tissue microarray, and miR-1307-5p expression was detected by qPCR. CCK-8, EdU, colony formation, scratch test, and Transwell assays were used to observe cell proliferation and migration. Double luciferase assay, western blot, qPCR, and immunohistochemistry weAPK pathway. Epigenetic inhibitor library TRAF3 colocalized with p65 and the localization of TRAF3 and p65 changed in each treatment group. Tumor volume of the lv-miR-1307-5p group was significantly larger than that of the lv-NC group, and that of the lv-miR-1307-5p-inhibitor group was significantly smaller than that of the lv-NC group.
In conclusion, miR-1307-5p targets TRAF3 and activates the NF-κB/MAPK pathway to promote proliferation in lung adenocarcinoma.
In conclusion, miR-1307-5p targets TRAF3 and activates the NF-κB/MAPK pathway to promote proliferation in lung adenocarcinoma.
Triple-negative breast cancer (TNBC) is a highly aggressive malignancy that lacks sensitivity to chemotherapy, endocrine therapy or targeted therapy. CDK4/6 inhibitors, combined with endocrine therapy, have been shown to be effective in postmenopausal women with HR-positive, HER2-negative advanced or metastatic breast cancer. Therefore, we investigated whether the CDK4/6 inhibitor palbociclib (PD) could enhance the effects of cisplatin (CDDP) on TNBC.
The effects of different drug regimens consisting of PD and CDDP on MDA-MB-231 and RB-knockdown MDA-MB-231 (sh-MDA-MB-231) cells were assessed in vitro and in vivo. MDA-MB-468 and RB-overexpressing MDA-MB-468 cells were used to assess the effect of the PD-CDDP regimens in vitro. Immunoblotting illustrated the role of the cyclin D1/RB/E2F axis signalling pathway.
PD induced G1 phase cell cycle arrest in the MDA-MB-231 cell line. However, synchronous treatment with PD and CDDP for 24h, treatment with PD for 24h followed by CDDP and treatment with CDDP for 24 PD enhanced sensitivity to CDDP through the CDK4/6-cyclin D1-RB-E2F pathway.
Pre-treatment with PD synchronized the tumour cell cycle through the CDK4/6-cyclin D1-RB-E2F pathway, which increased the antitumour effect of CDDP. Thus, PD-CDDP might be an effective treatment for RB-proficient TNBC patients.
Pre-treatment with PD synchronized the tumour cell cycle through the CDK4/6-cyclin D1-RB-E2F pathway, which increased the antitumour effect of CDDP. Thus, PD-CDDP might be an effective treatment for RB-proficient TNBC patients.
Website: https://www.selleckchem.com/pharmacological_epigenetics.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team