NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

American indian Investigation inside Gestational Diabetes costs Three Decades: A new Scientometric Investigation.
Ethyl acetate is an organic solvent with many industrial applications, currently produced by energy-intensive chemical processes based on fossil carbon resources. Ethyl acetate can be synthesized from renewable sugars by yeasts like Kluyveromyces marxianus in aerobic processes. However, ethyl acetate is highly volatile and thus stripped from aerated cultivation systems which complicate the quantification of the produced ester. Synthesis of volatile metabolites is commonly monitored by repeated analysis of metabolite concentrations in both the gas and liquid phase. In this study, a model-based method for quantifying the synthesis and degradation of volatile metabolites was developed. This quantification of volatiles is solely based on repeatedly measured gas-phase concentrations and allows calculation of reaction rates and yields in high temporal resolution. Parameters required for these calculations were determined in abiotic stripping tests. The developed method was validated for ethyl acetate, ethanol and acetaldehyde which were synthesized by K. marxianus DSM 5422 during an iron-limited batch cultivation; it was shown that the presented method is more precise and less time-consuming than the conventional method. The biomass-specific synthesis rate and the yield of ethyl acetate varied over time and exhibited distinct momentary maxima of 0.50 g g‒1h‒1 and 0.38 g g‒1 at moderate iron limitation.Diazotrophic cyanobacteria are able to fix N2 from the atmosphere and release it as bioavailable nitrogen what other organisms can utilize. Thus, they could be used as living nitrogen supplier whereby the use of fertilizer could be reduced in agricultural industry what results in a decrease of laughing gas released during fertilizer production. The diazotroph cyanobacterium Desmonostoc muscorum (D. muscorum) was characterized in shake flasks cultivated in nitrogen-free and nitrogen-containing medium. Similar growth rates were reached in both cultivations and the release of ammonium by D. muscorum was detected under nitrogen depletion. Subsequently, D. muscorum was co-cultivated with Arabidopsis thaliana (A. thaliana) in nitrogen-free medium. Additionally, the plant was cultivated in nitrogen containing and nitrogen-free medium without D. Selleckchem D-Luciferin muscorum as reference. A co-cultivation led to higher growth rates of the cyanobacterium and similar growth of A. thaliana with similar maximum photochemical efficiency of photosystem II compared to the growth of nitrogen containing medium. Further, accumulation of cyanobacterial cells around the roots of A. thaliana was detected, indicating a successfully induced artificial symbiosis. Based on these results, D. muscorum could be a promising cyanobacterium as living nitrogen supplier for plants.Batch growth and β-carotene production of Dunaliella salina CCAP19/18 was investigated in flat-plate gas-lift photobioreactors with a light path of 2 cm, operated in physically simulated outdoor conditions. Dunaliella salina CCAP19/18 showed robust growth with respect to pH 8.0-9.0 and 15-35°C at increasing salinity, simulating the evaporation of open photobioreactors. The highest β-carotene concentration of 25 mg L-1 (3 mg gCDW -1) was observed in batch processes at pH 8.5, 15-30°C and increasing salinity up to 110 g L-1, simulating a typical Mediterranean summer climate. Intracellular β-carotene accumulation of D. salina CCAP19/18 was shown to be independent of light availability, although nutrient limitation (K2HPO4, MgSO4, and/or ammonium ferric citrate) seems to enable stable β-carotene content in the algal cells despite increasing cell densities in the photobioreactor. Fully controlled, lab-scale photobioreactors simulating typical climate conditions of any region of interest are valuable tools for enabling a realistic characterization of microalgae on a laboratory scale, for production processes projected in open photobioreactor systems (e.g. thin-layer cascade photobioreactors).The metabolism of Chinese hamster ovary (CHO) cell lines is typically characterized by high rates of aerobic glycolysis with increased lactate formation, known as the "Warburg" effect. Although this metabolic state can switch to lactate consumption, the involved regulations of the central metabolism have only been partially studied so far. An important reaction transferring the lactate precursor, pyruvate, into the tricarboxylic acid cycle is the decarboxylation reaction catalyzed by the pyruvate dehydrogenase enzyme complex (PDC). Among other mechanisms, PDC is mainly regulated by phosphorylation-dephosphorylation at the three sites Ser232, Ser293, and Ser300. In this work, the PDC phosphorylation in antibody-producing CHO DP-12 cell culture is investigated during the lactate switch. Batch cultivations were carried out with frequent sampling (every 6 h) during the transition from lactate formation to lactate uptake, and the PDC phosphorylation levels were quantified using a novel indirect flow cytometry protocol. Contrary to the expected activation of PDC (i.e., reduced PDC phosphorylation) during lactate consumption, Ser293 and Ser300 phosphorylation levels were 33% higher compared to the phase of glucose excess. At the same time, the relative phosphorylation level of Ser232 increased steadily throughout the cultivation (66% increase overall). The intracellular pyruvate was found to accumulate only during the period of high lactate production, while acetyl-CoA showed nearly no accumulation. These results indicate a deactivation of PDC and reduced oxidative metabolism during lactate switch even though the cells undergo a metabolic transition to lactate-based cell growth and metabolism. Overall, this study provides a unique view on the regulation of PDC during the lactate switch, which contributes to an improved understanding of PDC and its interaction with the bioprocess.DOI 10.1002/elsc.202000037 The cover feature visualizes our recent article about the investigation of the regulation of the Pyruvate Dehydrogenase Complex (PDC) during the lactate switch in batch cultures of Chinese Hamster Ovary cells. The relevance of this work to bioprocess engineering is highlighted in the background and the central cellular metabolic regulations are shown symbolically on the right-hand side. The regulation of PDC through phosphorylation was quantified at three regulating sites using a novel indirect flow cytometry protocol, shown as "glowing" antibodies. For details see article DOI 10.1002/elsc.202000037 on page 99.
Website: https://www.selleckchem.com/products/d-luciferin.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.