Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Alpha-fetoprotein (AFP) is a well-established serum biomarker for hepatocellular carcinoma (HCC) in clinical laboratories. However, AFP levels can often be high in benign liver diseases such as liver cirrhosis. For this reason, specifically, the level of the aberrant N-glycosylation of AFP has been proposed as a HCC biomarker to improve diagnostic performance using targeted mass spectrometry (MS). In this study, we developed an endoglycosidase-assisted absolute quantification (AQUA) method by which to measure N-glycosylated AFP levels in serum using liquid chromatography-parallel reaction monitoring with immunoprecipitation. Especially, an isotopically labeled synthetic N-glycopeptide with N-acetylhexosamine (HexNAc) attached to asparagine (N) was used as an internal standard. The efficacy of this method was demonstrated by quantifying the N-glycosylation of AFP in human serum. As selleck chemicals , we showed that the lower limit of the quantification of a stable isotope-labeled N-glycopeptide reached an attomolar level. Our method also had a linear dynamic range from 2 to 6000 ng/mL for N-glycosylated AFP levels. Finally, the N-glycosylation levels of AFP were measured in HCC patients and in healthy donors with the coefficient of variation in both cases ( less then 10% CV). To the best of our knowledge, this is the first report of the AQUA of N-glycosylated AFP in human sera using a stable isotope-labeled glycopeptide as an internal standard. The results demonstrate that our method can facilitate the discovery and verification of aberrant glycoprotein biomarkers in human serum and plasma through sensitive and precise quantification.Carboxyl-containing metabolites (CCMs) play indispensable roles in cell energy metabolism and cell-cell signaling. Profiling tissue CCMs with spatial signatures is significant for the understanding of molecular histology and may provide new clues to uncover the complex metabolic reprogramming of organisms in response to external or internal stimuli. Here, we develop a sensitive on-tissue CCMs derivatization method, coupled with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), to visualize the spatial distributions of CCMs in biological tissues. A novel reagent, N,N,N-trimethyl-2-(piperazin-1-yl)ethan-1-aminium iodide (TMPA), was synthesized and used for the on-tissue derivatization of CCMs. Meanwhile, the on-tissue derivatization efficiency was significantly improved by introducing acetonitrile gas in the incubation system. With this methodology, a total of 28 CCMs, including 5 tricarboxylic acid cycle intermediates, 20 fatty acids, and 3 bile acids, were successfully detected and imaged in rat kidney tissues. More importantly, the introduction of a quaternary ammonium group into the chemical structure of CCMs enables simultaneous MALDI-MS imaging of tricarboxylic acid cycle intermediates, fatty acids, bile acids, and their metabolic pathway-related metabolites such as carnitines, cholines, glycerophosphocholine, phospholipids, and so on in the positive ion mode. This on-tissue derivatization MALDI-MSI approach was proven to be a powerful tool for probing the distributions and spatial metabolic networks of CMMs in biological tissues.Parkinson's disease (PD) is a progressive neurodegenerative disorder involving dopaminergic neurons from the substantia nigra. The loss of dopaminergic neurons results in decreased dopamine (DA) release in the striatum and thus impaired motor functions. DA is one of the key neurotransmitters monitored for the diagnosis and during the progression and treatment of PD. Therefore, sensitive and selective DA detection methods are of high clinical relevance. In this study, a new microfluidic device utilized for electrochemical DA detection is reported. #link# The microfluidic sensing device operates in the range of 0.1-1000 nM DA requiring only ∼2.4 μL sample volume, which corresponds to detectable 240 amol of DA. Using this sensor, we were able to monitor the changes in DA levels in cerebrospinal fluid and plasma of a mouse model of PD and following the treatment of drug l-3,4-dihydroxyphenylalanine.Methylcobalamin, which is used for the clinical treatment of patients with neuropathy, can have an impact on the sensorineural components associated with the cochlea, and it is possible that the auditory threshold in a certain population of patients with deafness may be recovered. Nonetheless, it remains uncertain whether the action site of methylcobalamin is localized inside or outside the cochlea and which cellular or tissue element is targeted by the drug. In the present work, we developed a method to realize in vivo real-time simultaneous examination of the drug kinetics in two separate locations using boron-doped diamond microelectrodes. First, the analytical performance of methylcobalamin was studied and the measurement protocol was optimized in vitro. Then, the optimized protocol was applied to carry out real-time measurements inside the cochlea and the leg muscle in live guinea pigs while systemically administering methylcobalamin. The results showed that the methylcobalamin concentration in the cochlea was below the limit of detection for the microelectrodes or the drug did not reach the cochlea, whereas the compound clearly reached the leg muscle.The 18O/16O (and 15N/14N) ratio of natural nitrate (NO3-) and nitrite (NO2-) can be used to extract valuable information about their source and fate as environmental contaminants, their metabolism as macronutrients in plants and animals, and their behavior in the N biogeochemical cycle. We developed an accurate, precise, sensitive (minimum sample size 0.2 μg NO3--equivalent), and reliable (minimal oxygen exchange, loss, or gain) method to selectively isolate and purify nitrate and nitrite from natural water, soil, air, and plant materials by strong anion exchange (SAX) for low- to normal-salinity samples or strong cation exchange (SCX) for high-salinity samples, followed by quantitative conversion to their respective benzyl esters, which can be separated and individually analyzed for δ18O (and potentially δ15N) by gas chromatography (GC)/pyrolysis/GC/isotope-ratio mass spectrometry (IRMS). The method compares favorably with the currently popular bacterial denitrification and chemical reduction methods, in terms of sensitivity and reliability, and has the potential to simultaneously measure δ15N and δ18O of nitrate and nitrite from natural samples of various origins.
Read More: https://www.selleckchem.com/products/t0070907.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team