Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Multiphase flow in porous media has been thoroughly studied over the years and its importance is encountered in several areas related to geo-materials. One of the most important parameters that control multiphase flow in any complex geometry is wettability, which is an affinity of a given fluid toward a surface. In this paper, we have quantified the effects of wettability on deformation in porous media, along with other parameters that are involved in this phenomenon. To this end, we conducted numerical simulations on a porous medium by coupling the exchanged forces between the fluid and solid. To include the effect of wettability in the medium, we used the Fictitious Domain methodology and coupled it with volume of fluid through which one can model more than one fluid in the system. To observe the effect of wettability on dynamic processes in the designated porous medium, such as deformation, particle-particle contact stresses, particle velocity, and injection pressure, a series of systematic computations were conducted where wettability is varied through five different contact angles. We found that wettability not only controls the fluid propagation patterns but also affects drag forces exerted on the particles during injection such that larger deformations are induced for particles with lower wettability. Our results are also verified against experimental tests.The transport and fate of human expiratory droplets play a key role in the transmission of respiratory infectious diseases. In this paper, we present a modeling approach to understand the fundamental dynamics of exhaled droplets in human respiratory activities. The model solves a series of governing equations of droplets and uses a continuous random walk model to simulate turbulent fluctuations in violent expiratory events. The validation of the model shows the improvement in the prediction of dispersion of median-sized droplets. We show that these droplets are sensitive to environmental conditions, including temperature, humidity, and ambient flows. Applying the model to a set of idealized conditions such as free-fall and continuous jets, we demonstrate significantly different impacts of environmental parameters on droplets with different sizes. Using a realistic droplet size distribution and cough duration, we quantify the transport and fate of droplets in the near field of source and the potential influences by ambient conditions. The model we developed from this study could be applied to study the mechanisms for airborne pathogens, e.g., influenza virus and new coronavirus.In this paper, we investigate the dynamics of spherical droplets in the presence of a source-sink pair flow field. The dynamics of the droplets is governed by the Maxey-Riley equation with the Basset-Boussinesq history term neglected. We find that, in the absence of gravity, there are two distinct behaviors for the droplets small droplets cannot go further than a specific distance, which we determine analytically, from the source before getting pulled into the sink. Larger droplets can travel further from the source before getting pulled into the sink by virtue of their larger inertia, and their maximum traveled distance is determined analytically. We investigate the effects of gravity, and we find that there are three distinct droplet behaviors categorized by their relative sizes small, intermediate-sized, and large. Counterintuitively, we find that the droplets with a minimum horizontal range are neither small nor large, but of intermediate size. Furthermore, we show that in conditions of regular human respiration, these intermediate-sized droplets range in size from a few μm to a few hundred μm. The result that such droplets have a very short range could have important implications for the interpretation of existing data on droplet dispersion.A virus-laden particle movement from urinal flushing is simulated. Similar to the toilet-induced flushing, results indicate that the trajectory of the particles triggered by the urinal flushing manifests an external spread type. Even more alarmingly, the particle can reach 0.84 m (man's thigh) in 5.5 s when compared with the diffusion performance of the toilet-induced one (around 0.93 m in 35 s). A more violent climbing tendency is discovered in this Letter. Wearing masks should be made mandatory in public washrooms, and anti-diffusion improvements of facilities in public washrooms are urgently needed, especially in the current "SARS-CoV-2" crisis.The aim of this article is to clarify how best to interpret some of the central constructs that underwrite the free-energy principle (FEP) - and its corollary, active inference - in theoretical neuroscience and biology namely, the role that generative models and variational densities play in this theory. We argue that these constructs have been systematically misrepresented in the literature, because of the conflation between the FEP and active inference, on the one hand, and distinct (albeit closely related) Bayesian formulations, centred on the brain - variously known as predictive processing, predictive coding or the prediction error minimisation framework. More specifically, we examine two contrasting interpretations of these models a structural representationalist interpretation and an enactive interpretation. We argue that the structural representationalist interpretation of generative and recognition models does not do justice to the role that these constructs play in active inference under the FEP. We propose an enactive interpretation of active inference - what might be called enactive inference. In active inference under the FEP, the generative and recognition models are best cast as realising inference and control - the self-organising, belief-guided selection of action policies - and do not have the properties ascribed by structural representationalists.The premature infant is born into the world unprepared to naturally thrive in a foreign environment. Lung development entails immense growth, structural remodeling and differentiation of specialized cells during the normal term perinatal and postnatal periods. Thus, the premature infant presents with a lung deficient for appropriate respiration. this website Disruption of lung development seen in bronchopulmonary dysplasia (BPD) and chronic lung disease (CLD) results in not only impaired airway growth but also a deficiency in the accompanying vasculature including the capillary system required for gas exchange. Deficient vascular area can lead to elevated pulmonary vascular resistance and the development of pulmonary hypertension (PH). Unlike PH seen in children and adults with pulmonary arterial hypertension (PAH), treatment with conventional pulmonary vasodilators can be limited in developmental lung disease-associated PH because there are fewer blood vessels to dilate. In this brief review, we highlight some of the knowledge on PH in the premature infant presented at the Proceedings of the 22nd Annual Update on Pediatric and Congenital Cardiovascular Disease.
Website: https://www.selleckchem.com/products/c25-140.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team