Notes
![]() ![]() Notes - notes.io |
Obese adipose tissue (AT) inflammation is partly driven by accumulation of CD4+ T helper (Th)1 cells and reduced Th2 and T regulatory subsets, which promotes macrophage chemotaxis and ensuing AT metabolic dysfunction. This study investigated CD4+ T cell/adipocyte cytokine-mediated paracrine interactions (cross talk) as a target for dietary intervention to mitigate obese AT inflammation. Using an in vitro co-culture model designed to recapitulate CD4+ T cell accumulation in obese AT (5% of stromal vascular cellular fraction), 3T3-L1 adipocytes were co-cultured with purified splenic CD4+ T cells from C57Bl/6 mice consuming one of two isocaloric diets containing either 10% w/w safflower oil (control, CON) or 7% w/w safflower oil+3% w/w fish oil (FO) for 4 weeks (n=8-11/diet). The FO diet provided 1.9% kcal from the long-chain (LC) n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid, a dose that can be achieved by supplementation. Co-cultures were stimulated for 48 h with lipopolysaccharide (LPS) to mimic in vivo obese endotoxin levels or with conditioned media collected from LPS-stimulated visceral AT isolated from CON-fed mice. In both stimulation conditions, FO reduced mRNA expression and/or secreted protein levels of Th1 markers (T-bet, IFN-γ) and increased Th2 markers (GATA3, IL-4), concomitant with reduced inflammatory cytokines (IL-1β, IL-6, IL-12p70, TNF-α), macrophage chemokines (MCP-1, MCP-3, MIP-1α, MIP-2) and levels of activated central regulators of inflammatory signaling (NF-κB, STAT-1, STAT-3) (P less then .05). Therefore, CD4+ T cell/adipocyte cross talk represents a potential target for LC n-3 PUFAs to mitigate obese AT inflammation.Renal cell carcinoma (RCC) is one of the most common urologic malignant tumors. Current chemotherapy is not effective in RCC and results in some side effects. Resveratrol (RSV) has been reported to exert antitumor effects in some cancer cells; however the mechanism is not fully understood. Herein, we aimed to determine the anticancer effect of RSV on RCC and further explore the underlying molecular mechanism in this process. We found that RSV inhibited tumor cells proliferation, migration and invasion and increased apoptosis of RCC either in vivo or in vitro. RSV significantly down-regulated expressions of NLRP3 and its downstream genes. Inhibition of NLRP3 by NLRP3 small interfering RNA mimicked the effects of RSV on RCC cells. These results suggested that RSV could exert antitumor effect by depressing activity of NLRP3, and NLRP3 would be a promising clinical therapeutic strategy for RCC.Microbial transglutaminase from Streptomyces mobaraensis (MTG) has been widely used in food industry and also in research and medical applications, since it can site-specifically modify proteins by the cross-linking reaction of glutamine residue and the primary amino group. The recombinant expression system of MTG in E. coli provides better accessibility for the researchers and thus can promote further utilization of MTG. ARRY-575 Herein, we report production of active and soluble MTG in E. coli by using a chimeric protein of tobacco etch virus (TEV) protease and MTG zymogen. A chimera of TEV protease and MTG zymogen with native propeptide resulted in active MTG contaminated with cleaved propeptide due to the strong interaction between the propeptide and catalytic domain of MTG. Introduction of mutations of K9R and Y11A to the propeptide facilitated dissociation of the cleaved propeptide from the catalytic domain of MTG and active MTG without any contamination of the propeptide was obtained. The specific activity of the active MTG was 22.7 ± 2.6 U/mg. The successful expression and purification of active MTG by using the chimera protein of TEV protease and MTG zymogen with mutations in the propeptide can advance the use of MTG and the researches using MTG mediated cross-linking reactions.The importance of coronaviruses as human pathogen has been highlighted by the recent outbreak of SARS-CoV-2 leading to the search of suitable drugs to overcome respiratory infections caused by the virus. Due to the lack of specific drugs against coronavirus, the existing antiviral and antimalarial drugs are currently being administered to the patients infected with SARS-CoV-2. The scientists are also considering repurposing of some of the existing drugs as a suitable option in search of effective drugs against coronavirus till the establishment of a potent drug and/or vaccine. Computer-aided drug discovery provides a promising attempt to enable scientists to develop new and target specific drugs to combat any disease. The discovery of novel targets for COVID-19 using computer-aided drug discovery tools requires knowledge of the structure of coronavirus and various target proteins present in the virus. Targeting viral proteins will make the drug specific against the virus, thereby, increasing the chances of viral mortality. Hence, this review provides the structure of SARS-CoV-2 virus along with the important viral components involved in causing infection. It also focuses on the role of various target proteins in disease, the mechanism by which currently administered drugs act against the virus and the repurposing of few drugs. The gap arising from the absence of specific drugs is addressed by proposing potential antiviral drug targets which might provide insights into structure-based drug development against SARS-CoV-2.
Salvia miltiorrhiza Bunge (Danshen), a traditional Chinese medicine, has demonstrated in modern studies for its pharmacological activities in treatments of CNS disorders like insomnia, dysphoria. However, its application on anxiolytic effect from the ethanol extract of Salvia miltiorrhiza Bunge (SM
) has not yet been reported.
This study investigated the anxiolytic effect of the SM
using the elevated plus-maze test (EPM) and the hole-board test (HBT) with diazepam and buspirone as positive controls. Also, the spontaneous locomotor activity of mice had been investigated in the open field. Further, we have illustrated the anxiolytic mechanisms of SM
with its influencing upon GABAergic and/or serotonergic nervous systems via a method that SM
was co-administered with flumazenil, a benzodiazepine (BZD) antagonist, or a drug (WAY-100635), a selective 5HT
receptor antagonist.
In hole-board test, results presented that SM
increased head-dip counts and duration time. On the other hand, a decrease in spontaneous locomotor activity was observed.
My Website: https://www.selleckchem.com/products/gdc-0575.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team