Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Background There is increasing evidence for music-based interventions in neurorehabilitation, improving mood and functional outcomes. In response, there is growing interest from health-care providers in setting up Neurologic Music Therapy (NMT) services. This paper presents some preliminary data on the feasibility and acceptability of NMT in the acute stroke, multidisciplinary team setting, about which little is known.Objectives To assess the feasibility and acceptability of a two-day per-week NMT service over 24 months.Methods Data were collected on the number of referrals received, sessions attended, sessions declined and reasons why. Staff completed questionnaires, and collected them from patients and their relatives, rating interventions 1. Not helpful, 2. Quite helpful, 3. Helpful, 4. Very helpful. Patients completed the Visual Analogue Mood Scale (VAMS) pre-/post- a single session.Results Of 201 patients referred, 177 received treatment and 675 sessions were delivered. Twenty-four patients were discharged before sessions were scheduled and 28 sessions were declined, predominantly due to fatigue. Mean scores (SD) from questionnaire data were patients (n = 99) 3.34 (0.825), relatives (n = 13) 3.83 (0.372), staff (n = 27) 3.85 (0.388). Mean, post-session VAMS data (n = 52) showed a non-significant reduction in 'Sad' (7.5, p = .007, CI = 2.1, 12.9) and an increase in 'Happy' (+ 6.2, p = .013, CI = -11.0, -1.4).Conclusions Data suggest the service was feasible and helpful, particularly for patient mood, possibly improving engagement in rehabilitation. Research to determine generalizability in different stroke environments and treatment effects within them is warranted.Colistin resistant Acinetobacter baumannii strains are of great concern worldwide. However, the role of efflux pumps in colistin resistance needs to be elucidated. We investigated the changes in colistin MICs of 29 colistin resistant A. baumannii isolates in response to resistance-nodulation-division (RND)-type efflux pump inhibitor (EPI) and the alterations in AdeR and AdeS two-component regulatory proteins previously associated with the overproduction of AdeAB. The EPI, 1-(1-naphthylmethyl)-piperazine (NMP), led to significant reductions in colistin MICs. At least one of the following amino acid substitutions was found in AdeS proteins from 18 of the isolates L172P, A94V, V27I, V32I, G186V, and G164A. Besides, A136V and V120I alterations were identified in AdeR from five isolates. Therefore, EPI-responsive colistin resistance in our isolates is most likely due to the action of an RND-type efflux system. The underlying mechanism of resistance might be the result of certain AdeRS alterations, leading to AdeAB overexpression.Background Ibrutinib, a first-in-class, once-daily inhibitor of Bruton's tyrosine kinase (BTK), is approved in the US and EU for the treatment of various B-cell malignancies. In clinical studies, BTK inhibitors have been associated with increased bleeding risk, which may result from BTK inhibition in platelets.Methods To better understand the mechanism of ibrutinib in bleeding events, we isolated platelet-rich plasma from healthy donors (n = 8) and donors with conditions associated with impaired platelet function or with potentially increased bleeding risk (on hemodialysis, taking aspirin, or taking warfarin; n = 8 each cohort) and used light transmission aggregometry to assess platelet aggregation in vitro after exposure to escalating concentrations of ibrutinib, spanning and exceeding the pharmacologic range of clinical exposure.Results Platelet aggregation was induced by agonists of 5 major platelet receptors adenosine diphosphate (ADP), thrombin receptor-activating peptide 6 (TRAP6), ristocetin, collagen, or arachidonic acid (AA). Platelet aggregation induced by ADP, TRAP6, ristocetin, and AA was not meaningfully inhibited by the maximal concentrations of ibrutinib (10 µM). In contrast, collagen-induced platelet aggregation was dose-dependently inhibited by ibrutinib in all donor cohorts (maximum aggregation % with 10 μM ibrutinib, -64% to -83% of agonist activity compared to control agonist samples but without ibrutinib).Conclusion These results confirm prior reports and support a mechanistic role for the inhibition of collagen-induced platelet aggregation in bleeding events among susceptible individuals receiving ibrutinib therapy.Background Morphine plays an irreplaceable role in relieving severe pain clinically, while long-term medication inevitably leads to drug resistance. MicroRNA (miR) 146a has been reported to be a negative regulator in the process of morphine-tolerance formation. This study aimed to investigate how miR-146a affects the development of morphine analgesic tolerance.Methods The morphine-tolerance rat model was established by means of one-week continuous morphine administration. Paw withdrawal latency test was performed every day, and spinal cord samples were dissected on the seventh day for Q-PCR and Western blotting to detect the expression level of miR-146a, and IRAK1/TRAF6 participated in TLR4 signaling pathway.Results The expression of miR-146 was significantly decreased in morphine-tolerant model. Also, overexpression of miR-146a reduced the resistance caused by morphine, followed by the down-regulation of IRAK1/TRAF6 in TLR4 pathway. The inhibition of miR-146a remarkably decreased paw withdrawal latency as well as increased the expression levels of TLR4 signaling pathway-related molecules, IRAK1 and TRAF6.Conclusion This study suggests that miR-146a attenuates morphine tolerance by inhibiting the expression of IRAK1/TRAF6 in TLR4 pathway, which could provide an essential experimental basis for the settlement of morphine resistance-associated matters.Amyloid fibrillation is the root cause of several neuro as well as non-neurological disorders. Understanding the molecular basis of amyloid aggregate formation is crucial for deciphering various neurodegenerative diseases. In our study, we have examined the lysozyme fibrillation process using nano-infrared spectroscopy (nanoIR). NanoIR enabled us to investigate both structural and chemical characteristics of lysozyme fibrillar species concurrently. The spectroscopic results indicate that lysozyme transformed into a fibrillar structure having mainly parallel β-sheets, with almost no antiparallel β-sheets. Features such as protein stiffness have a good correlation with obtained secondary structural information showing the state of the protein within the fibrillation state. The structural and chemical details were compared with transmission electron microscopy (TEM) and circular dichroism (CD). selleck products We have utilized nanoIR and measured infrared spectra to characterize lysozyme amyloid fibril structures in terms of morphology, molecular structure, secondary structure content, stability, and size of the cross-β core.
Website: https://www.selleckchem.com/products/yum70.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team