Notes
![]() ![]() Notes - notes.io |
at their analysis in hair samples requires the employed method to have picogram-level sensitivity. Therefore, the developed method was suitable for simultaneous analysis of ZPD, ZPCA, and ZCA in hair samples, and it could provide clear evidence for illegal ZPD administration, including ZPD-facilitated sexual assault.In this article, a magnetic paper-based sorptive phase is synthesized, which synergically combines the sorption capacity of a polyamide with the magnetic behavior of silica shielded Fe3O4 nanoparticles. The resulting material can be easily integrated into a drill-based environmental sampler, minimizing the diffusion boundary layer for enhanced mass transference. The new material has been evaluated for the extraction of four parabens and triclosan from swimming pool water samples. The main variables affecting the extraction have been studied in detail. selleck products The sampler is easy to transport allowing the on-site extraction of the analytes. This aspect can simplify the overall analytical procedure as only the sorptive phases, and not the samples, must be transported to the lab for the final analysis. The combination of the sampler with liquid chromatography-mass spectrometry allows determining the target analytes with limits of detection between 0.07 μg/L (butylparaben) and 0.1 μg/L (methylparaben and propylparaben). The precision, calculated at 5 μg/L, provides relative standard deviations better than 8%. The accuracy, which was evaluated spiking a blank swimming pool water sample with the target analytes at a concentration of 0.75 μg/L, provided relative recoveries in the range from 88 to 98%.Herein, a novel zwitterionic hydrophilic metal-organic framework (MOF)-functionalized material was synthesized through grafting l-glutathione (GSH) onto the Au which acts as the intermediate layer to modify the base material (PEI-ZIF-8) by the sulfhydryl group provided by GSH and the affinity provided by Au (denoted as PEI-ZIF-8@Au@GSH). The obtained product was employed to capture glycopeptides. Benefit from its excellent hydrophilic properties, abundant amphoteric ions, and unique large specific surface area, this material demonstrated amazing ability in the enrichment and identification of glycopeptides. As a result, the PEI-ZIF-8@Au@GSH displayed high sensitivity (as low as 2 fmol), excellent binding capacity (500 mg/g), outstanding enrichment selectivity (maximum mass ratio HRP to BSA is 11000) toward glycopeptides, and the ability to recycle at least five times. Furthermore, 35 and 51 glycopeptides were successfully detected from 5 μL human saliva and human serum respectively in the examination of the actual sample by MALDI-TOF MS. The above results indicated that the PEI-ZIF-8@Au@GSH had a satisfactory potential in the field of glycoproteomics.Excess free copper in serum has been identified to induce neurodegenerative diseases such as Alzheimer's disease, thus it is very important to determine copper (II) ions (Cu2+) content for human health test. Herein we developed a point-of-care testing (POCT) platform through a luminescence "on-off" recognition mechanism of serum copper. Microsized europium coordination polymer particles (Eu-CPs), which was prepared with citric acid (CA) and europium nitrate hexahydrate through a hydrothermal route, were then successfully loaded with the mixture of 2,6-pyridinedicarboxylic acid (DPA) and poly(vinyl alcohol) (PVA) to form electrospun nanofibrous films (ENFFs). The as-prepared Eu-CPs/DPA/PVA ENFFs exhibited red emission at 618 nm when exciting at 280 nm, with the quantum yields of 22.2% owing to the antenna effect from DPA to Eu3+. Furthermore, the strong luminescence could be selectively quenched by Cu2+ through coordination with DPA to interrupt the antenna effect. With that, Cu2+ was successfully detected in the range of 2-45 μM with a detection of limit of 1.3 μM, well matching with the requirement of clinic test of excess free copper induced neurodegenerative diseases. As a proof of concept at last, this POCT platform was used to detect free copper in spiked serum samples with a recovery of 101.1%-105.2%, demonstrating that this platform provides significant potential for use in clinical test.The thiolysis of 7-nitro-1,2,3-benzoxadiazole amine (NBD-A) paves the way for specific sensing of H2S over biothiols and real-time imaging in living organisms. Rational fabrication of NBD-A-based probe with ratiometric mode and two-photon excitation is highly appealing to achieve high quality bioimaging. In this work, the NBD-A molecules are assembled with poly(9,9-dioctylfluorenyl-2,7-diyl) polymer nanoparticles, defined as NBD@PFO, to construct two-photon ratiometric probes for H2S detection through the fluorescence resonance energy transfer (FRET). For the construction of NBD@PFO nanohybrids, polymer nanoparticles are employed as the NBD-A molecular vehicle, energy donor and two-photon absorber, while NBD-A is served as the response unit and energy acceptor. Taking advantages of NBD-A and polymer nanoparticles, the obtained NBD@PFO probes exhibit high selectivity, fast response ( less then 5 s), ratiometric detection and two-photon excitation. Our results indicate that NBD@PFO nanohybrids are successfully applied for monitoring of H2S concentration in living cells and zebrafish, exhibiting great potential of polymer nanoparticles to improve the imaging capability of an organic small molecular probe.Smart nanozymes that can be facile and rapidly produced, while with efficiently bio-regulated activity, are attractive for biosensing applications. Herein, a smart nanozyme, silver hexacyanoferrate (Ag4[Fe(CN)6]), was constructed in situ via the rapid, direct reaction between silver(I) and K4[Fe(CN)6]. And the activity of the nanozyme can be rationally modulated by different enzymatic reactions including the glucose oxidase (GOx, taken as a model oxidoreductase), alkaline phosphatase (ALP), and acetylcholinesterase (AChE). On the basis of which, a multiple function platform for the highly sensitive detection of glucose, ALP and AChE were developed through colorimetry. Corresponding detection limits for the above three targets were found to be as low as 0.32 μM, 3.3 U/L and 0.083 U/L (S/N = 3), respectively. The present study provides a novel nanozyme that can be produced in situ, which rules out the harsh, cumbersome, and time-consuming synthesis/purification procedures. In addition, it establishes a multiple function platform for the amplified detection of versatile targets by the aid of the developed nanozyme, whose detection has the advantages of low cost, ease-of-use, high sensitivity, and good selectivity.
Read More: https://www.selleckchem.com/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team