Notes
![]() ![]() Notes - notes.io |
Adult size, egg size, fecundity, and mass of gonads are affected by trade-offs between reproductive investment and environmental conditions shaping the evolution of life history traits among populations for widely distributed species. Coho salmon Oncorhynchus kisutch have a large geographic distribution, and different environmental conditions are experienced by populations throughout their range. We examined the effect of environmental variables on female size, egg size, fecundity, and reproductive investment of populations of Coho Salmon from across British Columbia using an information theoretic approach. Female size increased with latitude and decreased with migration distance from the ocean to spawning locations. Egg size was lowest for intermediate intragravel temperature during incubation, decreased with migration distance, but increased in rivers below lakes. Fecundity increased with latitude, warmer temperature during the spawning period, and river size, but decreased in rivers below lakes compared with rivers with tributary sources. Relative gonad size increased with latitude and decreased with migration distance. Latitude of spawning grounds, migratory distance, and temperatures experienced by a population, but also hydrologic features-river size and headwater source-are influential in shaping patterns of reproductive investment, particularly egg size. Although, relative gonad size varied with latitude and migration distance, how gonadal mass was partitioned gives insight into the trade-off between egg size and fecundity. The lack of an effect of latitude on egg size suggests that local optima for egg size related to intragravel temperature may drive the variation in fecundity observed among years.Clarifying the geographic patterns of species diversity and the determinant factors can provide essential information for species conservation and management. Stag beetles (Coleoptera Lucanidae) of Lucanus are important saproxylic insects and can be used for biomonitoring forests. Most of Lucanus species are facing conservation concerns due to their limited distribution and fragmented habitats, particularly in China, which has the richest species diversity of this genus. The distribution patterns of species diversity of Lucanus at large spatial scales remain portly understood. We studied the distribution patterns of Lucanus and its environmental and geographic determinants in China. Distribution data for 72 species and subspecies were examined. All these species are distributed in southern China except for Lucanus maculifemoratus dybowskyi, which is mainly distributed in north China. The hotspot for Lucanus in China is southeastern Tibet. Our study indicated that the species richness of Lucanus in China was shaped by the precipitation of the wettest and driest month, net primary productivity, digital elevation model, and latitude at a large scale. These variables collectively explained 56.2% of the variation in species richness; precipitation contributed the most (44.1%). Our results provide valuable insights to improve the conservation of Lucanus and can contribute to furthering our understanding of the biogeography of stag beetles in China.Anthropogenic global change is increasingly raising concerns about collapses of symbiotic interactions worldwide. this website Therefore, understanding how climate change affects symbioses remains a challenge and demands more study. Here, we look at how simulated warming affects the social ameba Dictyostelium discoideum and its relationship with its facultative bacterial symbionts, Paraburkholderia hayleyella and Paraburkholderia agricolaris. We cured and cross-infected ameba hosts with different symbionts. We found that warming significantly decreased D. discoideum's fitness, and we found no sign of local adaptation in two wild populations. Experimental warming had complex effects on these symbioses with responses determined by both symbiont and host. Neither of these facultative symbionts increases its hosts' thermal tolerance. The nearly obligate symbiont with a reduced genome, P. hayleyella, actually decreases D. discoideum's thermal tolerance and even causes symbiosis breakdown. Our study shows how facultative symbioses may have complex responses to global change.Theories and models attempt to explain how and why particular plant species grow together at particular sites or why invasive exotic species dominate plant communities. As local climates change and human-use degrades and disturbs ecosystems, a better understanding of how plant communities assemble is pertinent, particularly when restoring grassland ecosystems that are frequently disturbed. One such community assembly theory is priority effects, which suggests that arrival order of species into a community alters plant-plant interactions and community assembly. Theoretically, priority effects can have lasting effects on ecosystems and will likely be altered as the risk of invasion by exotic species increases. It is difficult to predict how and when priority effects occur, as experimental reconstruction of arrival order is often difficult in adequate detail. As a result, limited experimental studies have explored priority effects on plant community assembly and plant invasions. To determine if and how priority effects affect the success of invasive species, we conducted a greenhouse study exploring how the arrival order of an invasive grass, Bromus tectorum, affects productivity and community composition when grown with native grasses. We found evidence for priority effects, as productivity was positively related to dominance of B. tectorum and was greater the earlier B. tectorum arrived. This suggests that priority effects could be important for plant communities as the early arrival of an invasive species drastically impacted the productivity and biodiversity of our system at the early establishment stages of plant community development.High diversity in tropical compared to temperate regions has long intrigued ecologists, especially for highly speciose taxa like terrestrial arthropods in tropical rainforests. Previous studies showed that arthropod herbivores account for much tropical diversity, yet differences in the diversity of predatory arthropods between tropical and temperate systems have not been properly quantified. Here, we present the first standardized tropical-temperate forest quantification of spider diversities, a dominant and mega-diverse taxon of generalist predators. Spider assemblages were collected using a spatially replicated protocol including two standardized sampling methods (vegetation sweep netting and beating). Fieldwork took place between 2010 and 2015 in metropolitan (Brittany) and overseas (French Guiana) French territories. We found no significant difference in functional diversity based on hunting guilds between temperate and tropical forests, while species richness was 13-82 times higher in tropical versus temperate forests.
Homepage: https://www.selleckchem.com/products/fdw028.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team