Notes
![]() ![]() Notes - notes.io |
ically of their perceived strengths and weaknesses, because this information can guide curricular focus at the end of medical school and beginning of internship. Limitations of this study include variable participation and a high attrition rate. Further studies will address the utility of such a virtual curriculum for preinterns and for rotating medical students who have been displaced from clinical rotations during the novel coronavirus pandemic.
Competency-based medical education requires that residents are provided with frequent opportunities to demonstrate competence as well as receive effective feedback about their clinical performance. To meet this goal, we investigated how data collected by the electronic health record (EHR) might be used to assess emergency medicine (EM) residents' independent and interdependent clinical performance and how such information could be represented in an EM resident report card.
Following constructivist grounded theory methodology, individual semistructured interviews were conducted in 2017 with 10 EM faculty and 11 EM residents across all 5 postgraduate years. In addition to open-ended questions, participants were presented with an emerging list of EM practice metrics and asked to comment on how valuable each would be in assessing resident performance. Additionally, we asked participants the extent to which each metric captured independent or interdependent performance. BTK signaling inhibitor Data collection and analysis were iteratcorporate the perspectives of both clinical faculty and residents. Our work has important implications for capturing residents' contributions to clinical performances and distinguishing between independent and interdependent metrics in collaborative workplace-based settings.Air pollution exposure is a leading public health problem in China. The majority of the total air pollution disease burden is from fine particulate matter (PM2.5) exposure, with smaller contributions from ozone (O3) exposure. Recent emission reductions have reduced PM2.5 exposure. However, levels of exposure and the associated risk remain high, some pollutant emissions have increased, and some sectors lack effective emission control measures. We quantified the potential impacts of relevant policy scenarios on ambient air quality and public health across China. We show that PM2.5 exposure inside the Greater Bay Area (GBA) is strongly controlled by emissions outside the GBA. We find that reductions in residential solid fuel use and agricultural fertilizer emissions result in the greatest reductions in PM2.5 exposure and the largest health benefits. A 50% transition from residential solid fuel use to liquefied petroleum gas outside the GBA reduced PM2.5 exposure by 15% in China and 3% within the GBA, and avoided 191,400 premature deaths each year across China. Reducing agricultural fertilizer emissions of ammonia by 30% outside the GBA reduced PM2.5 exposure by 4% in China and 3% in the GBA, avoiding 56,500 annual premature deaths across China. Our simulations suggest that reducing residential solid fuel or industrial emissions will reduce both PM2.5 and O3 exposure, whereas other policies may increase O3 exposure. Improving particulate air quality inside the GBA will require consideration of residential solid fuel and agricultural sectors, which currently lack targeted policies, and regional cooperation both inside and outside the GBA.Diadromous fish populations face multiple challenges along their migratory routes. These challenges include suboptimal water quality, harvest, and barriers to longitudinal and lateral connectivity. Interactions among factors influencing migration success make it challenging to assess management options for improving migratory fish conditions along riverine migration corridors. We describe a spatially explicit simulation model that integrates complex individual behaviors of fall-run Chinook Salmon (Oncorhynchus tshawytscha) and summer-run steelhead trout (O. mykiss) during migration, responds to variable habitat conditions over a large extent of the Columbia River, and links migration corridor conditions to fish condition outcomes. The model is built around a mechanistic behavioral decision tree that drives individual interactions of fish within their simulated environments. By simulating several thermalscapes with alternative scenarios of thermal refuge availability, we examined how behavioral thermoregulation in cold-water refuges influenced migrating fish conditions. Outcomes of the migration corridor simulation model show that cold-water refuges can provide relief from exposure to high water temperatures, but do not substantially contribute to energy conservation by migrating adults. Simulated cooling of the Columbia River decreased reliance on cold-water refuges and there were slight reductions in migratory energy expenditure. This modeling of simulated thermalscapes provides a framework for assessing the contribution of cold-water refuges to the success of migrating fishes, but any final determination will depend on analyzing fish survival and health for their entire migration, water temperature management goals and species recovery targets.For patients with the acute respiratory distress syndrome (ARDS), ventilation strategies that limit end-expiratory derecruitment and end-inspiratory overdistension are the only interventions to have significantly reduced the morbidity and mortality. For this reason, the use of high-frequency oscillatory ventilation (HFOV) was considered to be an ideal protective strategy, given its reliance on very low tidal volumes cycled at very high rates. However, results from clinical trials in adults with ARDS have demonstrated that HFOV does not improve clinical outcomes. Recent experimental and computational studies have shown that oscillation of a mechanically heterogeneous lung with multiple simultaneous frequencies can reduce parenchymal strain, improve gas exchange, and maintain lung recruitment at lower distending pressures compared to traditional 'single-frequency' HFOV. This review will discuss the theoretical rationale for the use of multiple oscillatory frequencies in ARDS, as well as the mechanisms by which it may reduce the risk for ventilator-induced lung injury.
Website: https://www.selleckchem.com/btk.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team