Notes
![]() ![]() Notes - notes.io |
In short, the prepared HPP hydrogel had dual self-healing ability, adsorption capacity and mechanical strength, which would make it a promising candidate for long-life adsorbent.Although polyaniline (PANI) is a widely investigated conductive polymer for biological applications, studies addressing the biocompatibility of colloidal PANI dispersions are scarcely found in the literature of the area. Therefore, PANI nanoparticles stabilized by the natural polysaccharide gum Arabic (GA) were screened for their biocompatibility. The GA successfully stabilized the colloidal PANI-GA dispersions when exposed to a protein-rich medium, showing compatibility with the biological environment. The results obtained from a series of in vitro assays showed that, after up to 48 h of exposure to a range of PANI-GA concentrations (1-50 μg/mL), both mouse BALB/3T3 fibroblasts and RAW 264.7 macrophages showed no evidence of change in cellular proliferation, viability and metabolic activity. An increase in macrophage granularity poses as evidence of phagocytic uptake of PANI-GA, without resulting activation of this cell type. Additionally, the PANI-GA nanoparticles modulated the cell morphology changes induced on fibroblasts by GA in a concentration-dependent manner. Thus, this unprecedented biocompatibility study of PANI nanoparticles stabilized by a plant gum exudate polysaccharide showed promising results. This simple biomaterial might be further developed into colloidal formulations for biological and biomedical applications, taking advantage of its versatility, biocompatibility, and conductive properties.This study describes the effects of hydroxypropylation (HP) on sorghum and corn cold water soluble (CWS) starches prepared via alcoholic alkaline treatment (AAT). Propylene oxide (5% and 12% on starch weight basis) was used to modify both sorghum and corn starches. SEM analysis revealed that HP modification prior to AAT altered the granular morphology of native CWS starches. The characteristic peaks at 2980.28 cm-1 and 2979.87 cm-1 indicated the presence of hydroxypropyl groups and the complete loss of the granular order for HS12-CWS (hydroxypropylated sorghum CWS starch treated with 12% propylene oxide based on dry starch weight) and HC12-CWS (hydroxypropylated corn CWS starch treated with 12% propylene oxide based on dry starch weight) starches. Increase in swelling power and water binding capacity of HP modified CWS starches was observed. However, Percent transmittance was significantly reduced due to fragmented water-soluble granules. HP-modified CWS starch gels exhibited a more rigid gel network. Broader linear viscoelastic range suggesting greater stability and well dispersed behavior of HP-CWS starches. High G' values of HP-CWS starches were due to the ordered and elastic gel network that resisted deformation. Furthermore, all HP-CWS starches exhibited higher shear and thermal resistance compared to unmodified CWS starches.Hyaluronic acid (HA) has already been consolidated in the literature as an extremely efficient biopolymer for biomedical applications. In addition to its biodegradability, HA also has excellent biological properties. In the nanofiber form, this polymer can mimic biological tissues, mainly the layers of the skin, and therefore has great potential as structures for the construction of wound dressings. Despite the numerous efforts from the scientific community proposing new dressings, this is an area in constant evolution. A dressing that brings together all the properties of an ideal dressing has not been developed yet. Electrospinning is a simple and versatile technique that correctly aligned with the functional properties of HA can produce multifunctional nanofiber structures capable of promoting skin recover quickly. This review discusses (i) key strategies for successful electrospinning of HA, (ii) main challenges and advances found in the electrospinning process, (iii) the bioactive properties of this polymer in the treatment of wounds, as well as (iv) the results obtained in the last decade by the in vitro and in vivo evaluation of the healing properties of these nanosystems.Pore size distribution is a crucial structural element affecting the adsorption and diffusion of reagents and enzymes within starch granules. An accurate and credible method of determining the pore size distribution of starch granules especially for smooth ones is therefore required. In this work, low-field NMR cryoporometry (LF-NMRC) was applied to analyze the pore structure of potato starch (PS). The reliability of the LF-NMRC method is verified by comparing with the traditional method, i.e. the low temperature nitrogen adsorption (LT-NA). selleck chemical Both LF-NMRC and LT-NA could characterize the PS pore structure in mesoporous range. However, LF-NMRC has superiority over LT-NA in terms of the distinguishment and determination of pore size distribution approaching to the micropores, gives more accurate and reliable results than LT-NA does. Structural evidences from scanning electron microscope (SEM) and atomic force microscope (AFM) further indicated that the new proposed method is a non-destructive method that does not induce structural changes during sample preparation.Biodegradable aliphatic polyesters need to be tough for commodity-plastic applications, such as disposable bags. Herein, we show that chitosan nanowhiskers (CsWs) prepared from naturally abundant chitin is an effective nanofiller that reinforces the strength and toughness of poly(butylene succinate) (PBS). In-situ polycondensation of an aqueous solution of processed CsWs led to a PBS nanocomposite with the highest tensile strength (77 MPa) and elongation at break (530%) reported to date for all PBS types at a minimal nanofiller content of 0.2 wt%. The observed 3.2-fold increase in toughness of the CsW/PBS composite compared to neat PBS is superior to those of composites prepared using cellulose nanocrystals, chitin nanowhiskers, and unstably dispersed CsWs in 1,4-butanediol monomer. Interestingly, CsWs efficiently overcome the disadvantages of the PBS film that easily tears. The highly polar surfaces of the CsWs strongly bind to polymer chains and promote a fibrillar and micro-void structure, thereby maximizing the chain-holding ability of the nanofiller, which resists external tensile and tear stress.
My Website: https://www.selleckchem.com/products/triptolide.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team