Notes
![]() ![]() Notes - notes.io |
We also show that primiparous females (first-time breeders) were less likely to have surviving young. Our findings suggest that social bonds are not always beneficial for reproductive success in group-living species, and that female kangaroos may experience trade-offs between successfully rearing young and maintaining affiliative relationships.Signals of critical slowing down are useful for predicting impending transitions in ecosystems. However, in a system with complex interacting components not all components provide the same quality of information to detect system-wide transitions. Identifying the best indicator species in complex ecosystems is a challenging task when a model of the system is not available. In this paper, we propose a data-driven approach to rank the elements of a spatially distributed ecosystem based on their reliability in providing early-warning signals of critical transitions. selleck The proposed method is rooted in experimental modal analysis techniques traditionally used to identify structural dynamical systems. We show that one could use natural system fluctuations and the system responses to small perturbations to reveal the slowest direction of the system dynamics and identify indicator regions that are best suited for detecting abrupt transitions in a network of interacting components. The approach is applied to several ecosystems to demonstrate how it successfully ranks regions based on their reliability to provide early-warning signals of regime shifts. The significance of identifying the indicator species and the challenges associated with ranking nodes in networks of interacting components are also discussed.Game theory has been extensively applied to elucidate the evolutionary mechanism of cooperative behaviour. Dilemmas in game theory are important elements that disturb the promotion of cooperation. An important question is how to escape from dilemmas. Recently, a dynamic utility function (DUF) that considers an individual's current status (wealth) and that can be applied to game theory was developed. The DUF is different from the famous five reciprocity mechanisms called Nowak's five rules. Under the DUF, cooperation is promoted by poor players in the chicken game, with no changes in the prisoner's dilemma and stag-hunt games. In this paper, by comparing the strengths of the two dilemmas, we show that the DUF is a novel reciprocity mechanism (sixth rule) that differs from Nowak's five rules. We also show the difference in dilemma relaxation between dynamic game theory and (traditional) static game theory when the DUF and one of the five rules are combined. Our results indicate that poor players unequivocally promote cooperation in any dynamic game. Unlike conventional rules that have to be brought into game settings, this sixth rule is universally (canonical form) applicable to any game because all repeated/evolutionary games are dynamic in principle.Microbial pathogens continue to attract a great deal of attention to manage the termite population. Every bacterium has its own mode of action and in fact, the mechanisms used by bacteria to attack termites remain elusive at the moment. Hence, the objective of this study was to evaluate the susceptibility of subterranean termites Coptotermes curvignathus to opportunistic pathogens using culturable aerobic bacteria isolated from the termite gut and its foraging pathways. Bacterial suspensions were prepared in concentrations of 103, 106 and 109 colony-forming units (CFU) ml-1 and introduced to the termites via oral-contact and physical contact treatment. The data show that contact method acted slower and gave lower mortality, compared to the oral-contact method. Coptotermes curvignathus were highly susceptible to Serratia marcescens and Pseudomonas aeruginosa. Serratia marcescens showed the highest mortality percentage of 68% and 54% at bacterial concentration of 109 CFU ml-1 via oral-contact and contact method, respectively. Serratia marcescens was also defined as the bacteria with the highest ability to induce the high mortality of C. curvignathus with the lowest concentration of bacterial suspension at a given time under laboratory condition. The results of this study indicate that P. aeruginosa and S. marcescens in particular may be attractive candidates worth further examination as a possible biocontrol agent against C. curvignathus in the field and to evaluate environmental and ecological risks of the biocontrol.Tiger sharks, Galeocerdo cuvier, are a keystone, top-order predator that are assumed to engage in cost-efficient movement and foraging patterns. To investigate the extent to which oscillatory diving by tiger sharks conform to these patterns, we used a biologging approach to model their cost of transport. High-resolution biologging tags with tri-axial sensors were deployed on 21 tiger sharks at Ningaloo Reef for durations of 5-48 h. Using overall dynamic body acceleration as a proxy for energy expenditure, we modelled the cost of transport of oscillatory movements of varying geometries in both horizontal and vertical planes for tiger sharks. The cost of horizontal transport was minimized by descending at the smallest possible angle and ascending at an angle of 5-14°, meaning that vertical oscillations conserved energy compared to swimming at a level depth. The reduction of vertical travel costs occurred at steeper angles. The absolute dive angles of tiger sharks increased between inshore and offshore zones, presumably to reduce the cost of transport while continuously hunting for prey in both benthic and surface habitats. Oscillatory movements of tiger sharks conform to strategies of cost-efficient foraging, and shallow inshore habitats appear to be an important habitat for both hunting prey and conserving energy while travelling.Sea snakes propel themselves by lateral deformation waves moving backwards along their bodies faster than they swim. In contrast to typical anguilliform swimmers, however, their swimming is characterized by exaggerated torsional waves that lead the lateral ones. The effect of torsional waves on hydrodynamic forces generated by an anguilliform swimmer is the subject matter of this study. The forces, and the power needed to sustain them, are found analytically using the framework of the slender (elongated) body theory. It is shown that combinations of torsional waves and angle of attack can generate both thrust and lift, whereas combinations of torsional and lateral waves can generate lift of the same magnitude as thrust. Generation of lift comes at a price of increasing tail amplitude, but otherwise carries practically no energetic penalty.
My Website: https://www.selleckchem.com/products/vt103.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team