Notes
![]() ![]() Notes - notes.io |
Glycopolymers are synthetic polymers containing pendant carbohydrate groups. Other biological compounds can be incorporated into glycopolymers to prepare both random and block copolymers aimed at bio-related applications boronic acid can be introduced as a functional group to obtain crosslinked hydrogels; cholesterol and bile acids can be introduced to render the polymers more hydrophobic for the formation of micelles. Sugar-containing block copolymers with biocompatible blocks such as polypeptides, poly(ethylene glycol), poly(lactic acid) and poly(ε-caprolactone) were also prepared for potential application in drug carriers. These glycopolymers interact with lectins or lectin-containing surfaces as natural carbohydrate mimics. This review highlights the recent progress in the synthesis of random or block glycopolymers. Examples of the applications of glycopolymers in the separation and removal of toxins and bacteria, tumor cell recognition and glucose-responsive insulin delivery are presented and discussed.Carbon nanotubes (CNTs) have remarkable mechanical, thermal, electronic, and biological properties due to their particular atomic structure made of graphene sheets that are rolled into cylindrical tubes. Due to their outstanding properties, CNTs have been used in several technological fields. Currently, the most prominent research area of CNTs focuses on biomedical applications, using these materials to produce hybrid biosensors, drug delivery systems, and high performance composites for implants. Although a great number of research studies have already shown the advantages of CNT-based biomedical devices, their clinical use for in vivo application has not been consummated. Concerns related to their toxicity, biosafety, and biodegradation still remain. The effect of CNTs on the human body and the ecosystem is not well established, especially due to the lack of standardization of toxicological tests, which generate contradictions in the results. CNTs' toxicity must be clarified to enable the medical use of these exceptional materials in the near future. In this review, we summarize recent advances in developing biosensors, drug delivery systems, and implants using CNTs as smart biomaterials to identify pathogens, load/deliver drugs and enhance the mechanical and antimicrobial performance of implants.Nerve fibers and vessels play important roles in bone formation, and inadequate innervation in the bone defect area can delay the regeneration process. However, there are few studies aiming to promote innervation to engineer bone formation. Here, we report the development of an injectable thermoresponsive mesoporous silica nanoparticle (MSN)-embedded core-shell structured poly(ethylene glycol)-b-poly(lactic-co-glycolic acid)-b-poly(N-isopropylacrylamide) (PEG-PLGA-PNIPAM) hydrogel for localized and long-term co-delivery of microRNA-222 and aspirin (ASP) (miR222/MSN/ASP hydrogel). ASP was found to stimulate bone formation as previously reported, and miR222 induced human bone mesenchymal stem cell differentiation into neural-like cells through Wnt/β-catenin/Nemo-like kinase signaling. In a rat mandibular bone defect, injection of the co-delivered MSN hydrogel resulted in neurogenesis and enhanced bone formation, indicating that the present injectable miR222- and ASP-co-delivering colloidal hydrogel is a promising material for innervated bone tissue engineering.A simple selenamorpholine-based fluorescent probe has been designed and synthesized using a combination of selenamorpholine and a BODIPY fluorophore. BODIPY-Se has a low pKa value of 4.78 because of the selenamorpholine unit, which is beneficial for the probe to detect the lysosome. BODIPY-Se can turn on partial fluorescence only in lysosomes, due to a PET-inhibited process of protonation of selenamorpholine. buy Tivozanib In addition, the selenamorpholine unit of BODIPY-Se could selectively react with H2O2 through a redox reaction, leading to the alteration of the valence state of selenium from Se(ii) to Se(iv) and an additional PET-inhibited process. When BODIPY-Se tracked H2O2 in lysosomes, the two PET-inhibited processes would obviously amplify the fluorescence signal in living cells and in vivo. The probe could also detect the redox cycles between H2O2 and GSH continuously. Using confocal fluorescence imaging, the fluorescence localization of lysosomes demonstrated that BODIPY-Se could successfully target lysosomes. The probe could not only detect exogenous/endogenous H2O2 in living cells, but could also realize real-time monitoring of H2O2 in cancer cells and zebrafish. The results proved that BODIPY-Se is a promising fluorescent probe in biological applications.Although a significant number of studies on vascular tissue engineering have been reported, the current availability of vessel substitutes in the clinic remains limited mainly due to the mismatch of their mechanical properties and biological functions with native vessels. In this study, a novel approach to fabricating a vessel graft for vascular tissue engineering was developed by promoting differentiation of human bone marrow mesenchymal stem cells (MSCs) into endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) on a native vascular extracellular matrix (ECM) scaffold in a rotary bioreactor. The expression levels of CD31 and vWF, and the LDL uptake capacity as well as the angiogenesis capability of the EC-like cells in the dynamic culture system were significantly enhanced compared to the static system. In addition, α-actin and smoothelin expression, and contractility of VSMC-like cells harvested from the dynamic model were much higher than those in a static culture system. The combination of on-site differentiation of stem cells towards vascular cells in the natural vessel ECM scaffold and maturation of the resulting vessel construct in a dynamic cell culture environment provides a promising approach to fabricating a clinically applicable vessel graft with similar mechanical properties and physiological functions to those of native blood vessels.Protein sulfhydryl groups play a vital role in maintaining cellular redox homeostasis and protein functions and have attracted increasing interests for the selective detection of protein thiols over low-molecular-weight thiols (LMWTs). Herein, we reported a red-emitting and environment-sensitive probe (FM-red) for detecting and labeling protein thiols. The probe contains a maleimide unit as a thiol receptor and an environment-sensitive fluorophore as a sensor. The emission signal of the probe was exclusively switched on by binding to protein sulfhydryl groups through the twisted intramolecular charge transfer mechanism, while negligible fluorescence was observed when FM-red reacted with LMWTs. Various experiments verified that FM-red possessed fast responsivity (∼10 min) and high selectivity to sense protein thiols over LMWTs with a red emission (∼655 nm). These favorable properties enable the probe to image protein sulfhydryl groups in live cells and in vivo. In addition, as FM-red has a relatively high molecular weight (MW 688), it is able to separate the labeled proteins from the unlabeled ones after FM-red derivatization via routine protein electrophoresis, which may be applied to determine the redox states of thioredoxin, a small redox protein ubiquitous in all cells.
Here's my website: https://www.selleckchem.com/products/AV-951.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team