NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Main overall cool arthroplasty difficulties and costs inside liver organ implant recipients: any harmonized evaluation employing a nationwide data source.
Furthermore, it is theoretically proven that the obtained control scheme can achieve the desired objects. Finally, a one-link manipulator system and a three-degree-of-freedom ship maneuvering system are presented to illustrate the effectiveness of the proposed control method.In this brief, a new outlier-resistant state estimation (SE) problem is addressed for a class of recurrent neural networks (RNNs) with mixed time-delays. The mixed time delays comprise both discrete and distributed delays that occur frequently in signal transmissions among artificial neurons. Measurement outputs are sometimes subject to abnormal disturbances (resulting probably from sensor aging/outages/faults/failures and unpredictable environmental changes) leading to measurement outliers that would deteriorate the estimation performance if directly taken into the innovation in the estimator design. We propose to use a certain confidence-dependent saturation function to mitigate the side effects from the measurement outliers on the estimation error dynamics (EEDs). Through using a combination of Lyapunov-Krasovskii functional and inequality manipulations, a delay-dependent criterion is established for the existence of the outlier-resistant state estimator ensuring that the corresponding EED achieves the asymptotic stability with a prescribed H∞ performance index. Then, the explicit characterization of the estimator gain is obtained by solving a convex optimization problem. Finally, numerical simulation is carried out to demonstrate the usefulness of the derived theoretical results.The event-triggered consensus control problem is studied for nonstrict-feedback nonlinear systems with a dynamic leader. SKF96365 chemical structure Neural networks (NNs) are utilized to approximate the unknown dynamics of each follower and its neighbors. A novel adaptive event-trigger condition is constructed, which depends on the relative output measurement, the NN weights estimations, and the states of each follower. Based on the designed event-trigger condition, an adaptive NN controller is developed by using the backstepping control design technique. In the control design process, the algebraic loop problem is overcome by utilizing the property of NN basis functions and by designing novel adaptive parameter laws of the NN weights. The proposed adaptive NN event-triggered controller does not need continuous communication among neighboring agents, and it can substantially reduce the data communication and the frequency of the controller updates. It is proven that ultimately bounded leader-following consensus is achieved without exhibiting the Zeno behavior. The effectiveness of the theoretical results is verified through simulation studies.Traditional energy-based learning models associate a single energy metric to each configuration of variables involved in the underlying optimization process. Such models associate the lowest energy state with the optimal configuration of variables under consideration and are thus inherently dissipative. In this article, we propose an energy-efficient learning framework that exploits structural and functional similarities between a machine-learning network and a general electrical network satisfying Tellegen's theorem. In contrast to the standard energy-based models, the proposed formulation associates two energy components, namely, active and reactive energy with the network. The formulation ensures that the network's active power is dissipated only during the process of learning, whereas the reactive power is maintained to be zero at all times. As a result, in steady state, the learned parameters are stored and self-sustained by electrical resonance determined by the network's nodal inductances and capacitances. Based on this approach, this article introduces three novel concepts 1) a learning framework where the network's active-power dissipation is used as a regularization for a learning objective function that is subjected to zero total reactive-power constraint; 2) a dynamical system based on complex-domain, continuous-time growth transforms that optimizes the learning objective function and drives the network toward electrical resonance under steady-state operation; and 3) an annealing procedure that controls the tradeoff between active-power dissipation and the speed of convergence. As a representative example, we show how the proposed framework can be used for designing resonant support vector machines (SVMs), where the support vectors correspond to an LC network with self-sustained oscillations. We also show that this resonant network dissipates less active power compared with its non-resonant counterpart.The vulnerability of artificial intelligence (AI) and machine learning (ML) against adversarial disturbances and attacks significantly restricts their applicability in safety-critical systems including cyber-physical systems (CPS) equipped with neural network components at various stages of sensing and control. This article addresses the reachable set estimation and safety verification problems for dynamical systems embedded with neural network components serving as feedback controllers. The closed-loop system can be abstracted in the form of a continuous-time sampled-data system under the control of a neural network controller. First, a novel reachable set computation method in adaptation to simulations generated out of neural networks is developed. The reachability analysis of a class of feedforward neural networks called multilayer perceptrons (MLPs) with general activation functions is performed in the framework of interval arithmetic. Then, in combination with reachability methods developed for various dynamical system classes modeled by ordinary differential equations, a recursive algorithm is developed for over-approximating the reachable set of the closed-loop system. The safety verification for neural network control systems can be performed by examining the emptiness of the intersection between the over-approximation of reachable sets and unsafe sets. The effectiveness of the proposed approach has been validated with evaluations on a robotic arm model and an adaptive cruise control system.
Read More: https://www.selleckchem.com/products/skf96365.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.