Notes
Notes - notes.io |
In this study, a magnetized polyethylene composite has been prepared using ball milling procedure and employed as an efficient sorbent in magnetic dispersive solid phase extraction combined with dispersive liquid-liquid microextraction. This method has been utilized for the extraction and preconcentration of some pesticides from fruit juices prior to their quantification by gas chromatography-flame ionization detection. The prepared sorbent consisted of the natural iron oxide (obtained from sand) coated with polyethylene. In the present work, first a few mg of the magnetic composite is added into an aqueous solution containing the analytes and vortexed. After that the analytes are eluted with iso-propanol from the surface of the composite particles separated in the presence of a strong external magnetic field. For further enrichment of the analytes, 1,2-dibromoethane (at µL-level) as an extraction solvent is mixed with the obtained eluent and hastily injected into deionized water. The composite was characterized using techniques including vibrating sample magnetometry, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer-Emmett-Teller nitrogen sorption, and Fourier transform infrared spectrophotometry. Under optimal conditions, the method provided low limits of detection (0.94-1.9 μg L-1) and quantification (3.2-5.9 μg L-1), high enrichment factors (570-692), good linearity (r2 ≥ 0.994), and satisfactory repeatabilities (relative standard deviations ≤ 8% for intra- and inter-day precisions at a concentration of 15 μg L-1 of each analyte).Until today, ion-pair reversed-phase chromatography is still the dominating method for analytical characterization of synthetic oligonucleotides. Its hyphenation with mass spectrometry, however, has some drawbacks such as ion-suppression in electrospray ionization. To overcome this problem, we present in this work a multiple heart-cutting (MHC) two-dimensional liquid chromatography (2D-LC) method with ultra-violet (UV) and electrospray ionization (ESI) mass spectrometry (MS) detection. A reversed-phase/weak anion-exchange (RP/WAX) stationary phase in the first dimension (1D) provides the selectivity for separation of structurally closely related oligonucleotide sequences and deletions (shortmers), respectively, using a mixed pH/triethylammonium phosphate buffer gradient at constant organic modifier content. Heart cuts of the oligonucleotide peaks are transferred to the second dimension (2D) via a multiple heart-cutting valve which is equipped with two loop decks. The 2D RP column is used for desalting via a diverter valve. Active solvent modulation enables to refocus the oligonucleotide peak into a sharp zone by 2D RP entirely free of non-volatile buffer components and ion-pair agents. Oligonucleotides can thus be sensitively detected by ESI-QTOF-MS under MS-compatible conditions.Monitoring the levels of perfluorinated compounds (PFCs) in the environment is of vital importance, owing to their sustained environmental presence, extensive distribution, and associated health risks. The development of cost-effective and efficient sorbents for the establishment of sensitive analytical methods is critical for achieving trace-level detection. In this study, a graphitic carbon nitride (g-C3N4)-based sorbent is synthesized by a facile sonication-assisted method exfoliated by zeolitic imidazolate framework-67 (ZIF-67) in situ. The novel ZIF-67/g-C3N4 composites were systematically characterized by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and N2 adsorption-desorption analysis, exhibiting good dispersity and a large surface area. Moreover, molecular dynamics simulations indicated that g-C3N4 structures can be effectively exfoliated by the introduced ZIF-67 molecules. The hybrid material was successfully utilized as a dispersive solid-phase extraction sorbent, and the extraction factors were systematically optimized by response surface methodology. Under optimal conditions, the synthesized sorbent exhibited desirable linear correlations (R2 > 0.99), a low detection limit (0.3-2 ng L-1), and good repeatability (relative standard deviation less then 15%, n = 6). The developed method was applied for the analysis of natural and spiked water samples. The study demonstrated that the ZIF-67/g-C3N4 composites are promising materials for pollutant adsorption from drinking water samples.Thermal desorption aerosol gas chromatography mass spectrometry is capable of online measuring speciated organics in atmospheric aerosols. Selleckchem Liproxstatin-1 Compared to the one-dimensional gas chromatography, comprehensive two-dimensional gas chromatography increases the resolution and the sensitivity, mitigates the unresolved complex mixture and co-elution occurred in one-dimensional gas chromatography. In this study, we report a quartz filter-based thermal desorption aerosol comprehensive two-dimensional gas chromatography mass spectrometry (2D-Q-TAG). It combines a solid-state thermal modulator with a quartz filter-based thermal desorption aerosol gas chromatography mass spectrometry. The solid-state thermal modulator conducts modulation independently from the chromatographic oven without using cryogens or compressed air, which makes the system readily adaptive for field measurement. The 2D-Q-TAG was evaluated using C7-C40 n-alkanes and 16 polycyclic aromatic hydrocarbons (PAHs). It has low limits of detection from 0.001 to 0.104 ng. The instrument was then deployed to measure atmospheric PM2.5 (particulate matter with an equivalent aerodynamic diameter ≤ 2.5 μm) in urban Beijing. It allows in-situ detection of speciated organics in atmospheric aerosols with hourly time resolution. Organic classes including alkanes, furanones, alcohols, aldehydes, ketones, acids, PAHs, oxy-PAHs, and alkyl-naphthalenes were well separated and detected. The total mass concentration of n-alkanes ranged from 122.1 to 629.9 ng/m3. Diurnal variation of n-alkanes was captured due to the high time resolution of the instrument.
Website: https://www.selleckchem.com/products/liproxstatin-1.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team