Notes
![]() ![]() Notes - notes.io |
For autonomous vehicles (AV), the ability to share information about their surroundings is crucial. With Level 4 and 5 autonomy in sight, solving the challenge of organization and efficient storing of data, coming from these connected platforms, becomes paramount. Research done up to now has been mostly focused on communication and network layers of V2X (Vehicle-to-Everything) data sharing. However, there is a gap when it comes to the data layer. Limited attention has been paid to the ontology development in the automotive domain. More specifically, the way to integrate sensor data and geospatial data efficiently is missing. Therefore, we proposed to develop a new Connected Traffic Data Ontology (CTDO) on the foundations of Sensor, Observation, Sample, and Actuator (SOSA) ontology, to provide a more suitable ontology for large volumes of time-sensitive data coming from multi-sensory platforms, like connected vehicles, as the first step in closing the existing research gap. Additionally, as this research aims to further extend the CTDO in the future, a possible way to map to the CTDO with ontologies that represent road infrastructure has been presented. Finally, new CTDO ontology was benchmarked against SOSA, and better memory performance and query execution speeds have been confirmed.In nanoimprint lithography (NIL), a pattern is created by mechanical deformation of an imprint resist via embossing with a stamp, where the adhesion behavior during the filling of the imprint stamp and its subsequent detachment may impose some practical challenges. Here we explored thermal and reverse NIL patterning of polyvinylferrocene and vinylferrocene-methyl methacrylate copolymers to prepare complex non-spherical objects and patterns. While neat polyvinylferrocene was found to be unsuitable for NIL, freshly-prepared vinylferrocene-methyl methacrylate copolymers, for which identity and purity were established, have been structured into 3D-micro/nano-patterns using NIL. The cross-, square-, and circle-shaped columnar structures form a 3 × 3 mm arrangement with periodicity of 3 µm, 1 µm, 542 nm, and 506 nm. SU5416 According to our findings, vinylferrocene-methyl methacrylate copolymers can be imprinted without further additives in NIL processes, which opens the way for redox-responsive 3D-nano/micro-objects and patterns via NIL to be explored in the future.The enforcement of fine-grained access control policies in constrained dynamic networks can become a challenging task. The inherit constraints present in those networks, which result from the limitations of the edge devices in terms of power, computational capacity and storage, require an effective and efficient access control mechanism to be in place to provide suitable monitoring and control of actions and regulate the access over the resources. In this article, we present RESPOnSE, a framework for the specification and enforcement of security policies within such environments, where the computational burden is transferred to high-tier nodes, while low-tier nodes apply risk-aware policy enforcement. RESPOnSE builds on a combination of two widely used access control models, Attribute-Based Access Control and Role-Based Access Control, exploiting the benefits each one provides. Moreover, the proposed mechanism is founded on a compensatory multicriteria decision-making algorithm, based on the calculation of the Euclidean distance between the run-time values of the attributes present in the security policy and their ideal values, as those are specified within the established policy rules.Drought during the formative stages of a plant's growth triggers a sequence of responses to maintain optimal growing conditions, but often at the expense of crop productivity. Two field experiments were conducted to determine the effect of drought on 10 high-yielding sugarcane genotypes at two formative stages (the tillering stage (TS) and stalk elongation (SS)), within 30 days after treatment imposition. The experiments followed a split-plot in a randomized complete block design with three replicates per genotype. Agro-physiological responses to drought were observed to compare the differences in the response of sugarcane during the two formative stages. Drought significantly reduced total chlorophyll content (Chl) and stomatal conductance (Gs) for both formative stages, while significantly increasing total scavenging activity (AOA) and electrolyte leakage (EC). A higher level of Chl was observed in the stalk elongation stage compared to the tillering stage; however, lower AOA coupled with higher EC in the stalk elongation stage suggests higher drought susceptibility. Pearson's correlation analysis revealed a stronger correlation between plant height, internode length, Chl, AOA, EC, and Gs at the tillering stage relative to the stalk elongation stage. Moreover, results from the multivariate analysis indicate the different contribution values of each parameter, supplementing the hypothesized difference in response between the two formative stages. Multivariate analysis clustered the 10 genotypes into groups based on the traits evaluated, suggesting the ability of these traits to detect differences in a sample population. The observed relationship among traits during the two formative stages of sugarcane will be significant in screening and identifying drought-susceptible and drought-tolerant genotypes for variety development studies.This paper contributes to the literature on organizational interventions on occupational health by presenting a concept study design to test the efficacy of a Participatory Organizational-level Intervention to improve working conditions and job satisfaction in Healthcare. The Participatory Organizational-level Intervention is developed using the Italian methodology to assess and manage psychosocial risks tailored to Healthcare. We added an additional step evaluation, aiming to examine how the intervention works, what worked for whom and in which circumstances. This ongoing study is conducted in collaboration with two large Italian hospitals (more than 7000 employees). The study design comprises a quasi-experimental approach consisting of five phases and surveys distributed pre- and post-intervention aiming to capture improvements in working conditions and job satisfaction. Moreover, to evaluate the efficacy of the Intervention in terms of process and content, we use a realist evaluation to test Context-Mechanisms-Outcome (CMO) configurations.
Homepage: https://www.selleckchem.com/products/semaxanib-su5416.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team