Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Overall, controlling ORP via feedback-dosing of the electron donor was an effective strategy to optimize FBR performance for reducing selenate and nitrate in wastewater.It is a great challenge to develop a high-efficiency reactive flame retardant, applied to anhydride-cured epoxy resin (EP) system, simultaneously possessing good compatibility with matrix and mechanical reinforcement. In this respect, we successfully synthesized a novel phosphorus/nitrogen/boron-containing carboxylic acid (TMDB) through the facile esterification and addition reaction among 1,3,5-tris(2-hydroxyethyl)isocyanurate (THEIC), maleic anhydride (MAH), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and boric acid (BA). TMDB was utilized as a co-curing agent for EP/methyltetrahydrophthalic anhydride (MeTHPA) system and finally cured EP behaved great transparency, suggesting excellent compatibility of TMDB with EP. Compared with pure EP, modified EP exhibited comparable thermal stability and heat resistance but higher flame retardance. With only 15.1 wt% TMDB loading, the LOI value of anhydride-cured EP increased to 29.6% from 20.1% of pure EP, and UL-94 V-0 rating was achieved. The peak heat release rate (PHRR), total heat release (THR) and total smoke production (TSP) remarkably decreased by 58.5%, 41.7% and 47.2% compared with that of pure EP, respectively. Besides, different measurements revealed TMDB simultaneously functioned in the condensed and gaseous phase during combustion. Furthermore, after incorporation of TMDB, mechanical properties of cured EP were improved and the maximum increments of flexural and tensile strength can reach 11.8% and 61.4%, respectively.The production and environmental release of surface-modified titanium dioxide nanoparticles (nTiO2) have increased. Hence, crops may be directly exposed to the nTiO2 in soil. In this study, we grew carrots in soils amended with pristine, hydrophilic and hydrophobic surface-coated nTiO2 at 100, 200, and 400 mg kg-1 until full-plant maturity. The content of Ti in plant secondary roots treated with different nTiO2 at 400 mg kg-1 was in the order of hydrophobic > hydrophilic > pristine treatments, with values of 140.1, 100.5, and 64.3 mg kg-1, respectively. The fresh biomass of the taproot was significantly decreased by all nTiO2 forms at 400 mg kg-1 by up to 56 %, compared to control. Pristine nTiO2 at 100 mg kg-1 enhanced the fresh weight of leaves by 51 % with respect to control. Remarkably, an abnormal increase of taproot splitting was found in plants treated with all nTiO2 forms. learn more In carrots treated with the surface-coated nTiO2, the accumulation of Ca, Mg, Fe, and Zn increased in leaves; but Mg, Mn, and Zn decreased in taproots. These results suggest that future regulation of nTiO2 release into soils should consider its surface coating properties since the phytotoxicity effects depend on nTiO2 outer structure.Fenton-like oxidation for multicomponent wastewater treatment suffers from a low efficiency due to non-selective nature of produced reactive species. In this study, a multifunctional dual-layer ultrafiltration membrane (Seq-ICM) was synthesized for multiple pollutants decontamination. Characterizations of the membranes indicate that Seq-ICM comprises a skin layer for ultrafiltration, and a porous support layer loaded with ∼50% MIL-53(Fe) for catalysis. With bovine serum albumin coexisting, Seq-ICM can remove 75.7% bisphenol S (BPS), which is much higher than that of a simultaneous interception-catalysis membrane (44.2 %). For multicomponent wastewater treatment, Seq-ICM system can save ∼59%-67% oxidant dosage as well compared with catalysis alone membrane system to achieve 50% BPS removal. Furthermore, the decontamination mechanisms were investigated to explain the advantages of Seq-ICM. Sequential interception and oxidation process by Seq-ICM leads to the interception of macromolecular substances first, following by catalytic oxidation of low-molecular-weight organics. This process prevents macromolecular substances from competing for active species with low-molecular-weight organics, thereby enhancing selectivity and oxidation efficiency. Meanwhile, Seq-ICM shows satisfactory BPS removal efficiency for treatment of 2865 L/m2 synthetic solution, as well as in real wastewater matrix. We believe the proposed technology based on a composite membrane is promising for the removal of multicomponent substances from wastewater.Eighteen biocides used in building materials and domestic products were monitored in wastewater treatment plants (WWTPs) during dry weather and in combined sewer overflows (CSOs) during wet weather in the Paris conurbation. The aims of this study were to (i) acquire data on biocides in urban waters, which are very scarce up to now, (ii) identify their origins in CSOs with the perspective of reducing these contaminants at source, and (iii) compare and rank biocide pathways to the river (dry vs. wet weather) at the annual and conurbation scales. The results showed the ubiquity of the 18-targeted biocides in WWTP waters and CSOs. High concentrations of methylisothiazolinone, benzisothiazolinone (0.2-0.9 μg/L) and benzalkonium C12 (0.5-6 μg/L) were measured in wastewater. Poor WWTP removals ( less then 50 %) were observed for most of the biocides. Both wastewater (mainly domestic uses) and stormwater (leaching from building materials) contributed to the CSO contamination. However, benzisothiazolinone mainly came from wastewater whereas diuron, isoproturon, terbutryn, carbendazim, tebuconazole, and mecoprop mainly came from stormwater. Annual mass loads discharged by WWTPs and CSOs into the Seine River were estimated using a stochastic approach (Monte Carlo simulations) at the conurbation scale and showed that WWTP discharges are the major entry pathway.Consideration of livestock farming practices is necessary for the reliable prediction of veterinary antibiotics concentrations in livestock manure and soil and characterization of their ecological risks. This study aims to predict concentrations of chlortetracycline (CTC) generated from slurry pit and evaluate its ecological risk in soil based on the European Medicine Agency guidelines by considering slurry pit farm practices such as cleaning water volume and those uncertainties. Additionally, sensitivity analysis was conducted on the exposure estimation of CTC in soil employing the Monte Carlo simulation. The predicted environmental concentrations of CTC in the slurry pit and soil were in a range of 0.54-5.64 mg/kgmanure and 3.42-67.59 μg/kgsoil, respectively, for a 90 % confidence level. The predicted ranges included the measured values reported in previous studies. The probability of risk quotient (RQ) exceeding one was estimated at 9.3 % based on the Monte Carlo simulation. The four most influential factors on the exposure to CTC in soil were identified as nitrogen in fertilizer/compost, cleaning water volume, ratio of sick pigs requiring antibiotics, and pit emptying cycles.
Here's my website: https://www.selleckchem.com/products/zidesamtinib.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team